EasyEdit项目中Fine-Tuning实现优化问题的技术解析
2025-07-03 14:01:03作者:幸俭卉
在知识编辑领域,Fine-Tuning(微调)是一种基础但重要的方法。近期在EasyEdit项目中发现并修复了其FT-L(Fine-Tuning-Locality)实现中的一个关键问题,这对知识编辑的效果评估具有重要意义。
问题背景
在原始实现中,FT-L采用了ROME论文中的优化目标计算方法:仅通过输入prompt的最后一个token来计算负对数似然损失(nll loss)。这种方法存在一个潜在问题——当编辑目标(target)包含多个token时,模型会同时最大化所有目标token在prompt最后一个位置出现的概率,而不是按照自回归方式逐个预测目标token。
技术影响分析
这种实现方式会导致两个主要问题:
- 训练目标与标准语言模型训练不一致,不符合自回归生成的自然规律
- 在多token目标场景下,模型学习到的分布与实际应用时的生成过程存在偏差
解决方案
EasyEdit团队针对此问题提供了两种实现方案:
- prompt_last:保持与ROME论文一致的实现方式,仅通过最后一个token计算损失
- target_new:标准的自回归方法,使用交叉熵损失函数逐个预测目标token
其中,target_new方法被命名为FT-M(Fine-Tuning-MultiToken),作为更强大的知识编辑基线方法。
实验发现
尽管优化目标进行了修正,实验表明FT-L方法仍然难以同时兼顾可靠性和局部性:
- 高可靠性往往意味着模型权重被完全破坏
- 高局部性无法保证高编辑成功率
这些发现与原始论文中的结论保持一致,说明Fine-Tuning方法在知识编辑任务中存在的固有局限性。
实践建议
对于使用EasyEdit进行知识编辑研究的用户,建议:
- 根据实验需求选择合适的优化目标
- 对于多token编辑场景,优先考虑FT-M方法
- 注意评估时需同时考虑编辑成功率和模型保留原有知识的能力
该问题的发现和修复展示了开源社区协作的价值,也提醒研究者在基线方法实现时需要仔细验证其合理性。EasyEdit团队表示将在更新的arXiv版本中反映这些新的实验结果,为知识编辑领域提供更可靠的基准方法。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
449
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885