MMDetection多任务训练中类别信息动态更新的解决方案
问题背景
在使用MMDetection框架进行多任务目标检测训练时,经常会遇到需要在同一个训练环境中切换不同数据集和检测任务的需求。每个任务可能对应不同的目标类别和颜色配置,这就带来了一个关键问题:如何确保类别信息能够随着任务切换而动态更新。
问题现象
当开发者通过Python接口训练不同的检测任务时,第一个任务可以正常启动,但在切换到第二个任务时会出现"ValueError: need at least one array to concatenate"的错误。经过分析,这主要是由于以下两个原因导致的:
mmdet/datasets/coco.py
中的METAINFO(包含classes和palette)没有及时更新mmdet/evaluation/functional/class_names.py
中的coco_classes()
函数没有返回更新后的类别信息
解决方案
方案一:直接修改CocoDataset的METAINFO
在训练脚本的主函数中,可以直接修改CocoDataset的METAINFO属性:
from mmdet.datasets.coco import CocoDataset
CocoDataset.METAINFO = {'classes':('fire',), 'palette':[(220, 20, 60), ]}
这种方法简单直接,适用于明确知道需要设置的类别和颜色的情况。每次切换任务时,只需要重新设置这个属性即可。
方案二:通过配置文件动态加载
更灵活的方式是通过配置文件来动态加载类别和颜色信息:
- 首先创建一个配置文件(如Objectdataset_config.yaml),内容包含:
classes:
- class1
- class2
palette:
- [128, 64, 128]
- [220, 20, 60]
- 然后修改
mmdet/datasets/coco.py
:
with open('./Configs/Objectdataset_config.yaml', 'r', encoding='utf-8') as f:
Object_config = yaml.safe_load(f)
classes = tuple(Object_config['classes'])
palette = Object_config['palette']
METAINFO = {
'classes': classes,
'palette': palette
}
- 同时修改
mmdet/evaluation/functional/class_names.py
中的coco_classes()
函数:
def coco_classes() -> list:
with open('./Configs/Objectdataset_config.yaml', 'r', encoding='utf-8') as f:
Object_config = yaml.safe_load(f)
classes = list(Object_config['classes'])
return classes
实现原理
MMDetection框架在训练过程中会缓存一些类信息,特别是数据集相关的元数据。在多任务训练场景下,如果这些缓存信息没有被正确更新,就会导致后续任务使用错误的类别配置。
通过直接修改CocoDataset的METAINFO属性或从配置文件动态加载,可以确保:
- 数据集初始化时使用正确的类别信息
- 评估指标计算时使用正确的类别名称
- 可视化输出时使用正确的颜色配置
最佳实践建议
-
任务隔离:为每个任务创建独立的配置文件,确保类别和颜色配置清晰分离
-
配置验证:在加载配置文件时,添加必要的验证逻辑,确保类别数量和颜色数量匹配
-
错误处理:添加适当的异常处理,当配置文件缺失或格式错误时提供友好的提示
-
日志记录:在切换任务时记录当前的类别配置,便于后续调试
总结
在MMDetection框架中实现多任务训练的关键在于正确处理类别信息的动态更新。通过本文介绍的两种方法,开发者可以灵活地在不同检测任务间切换,而不会遇到类别信息不一致的问题。选择哪种方案取决于具体的应用场景和开发习惯,直接修改属性适合简单场景,而配置文件方式则更适合复杂的多任务系统。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









