TeslaMate 仪表盘温度数据显示性能优化分析
2025-06-02 11:51:51作者:冯梦姬Eddie
问题背景
TeslaMate 是一款用于监控特斯拉车辆数据的开源工具,其内置的 Grafana 仪表盘提供了丰富的车辆信息展示功能。近期有用户反馈,在 Raspberry Pi 等低性能设备上运行时,仪表盘中的"驾驶员温度"、"外部温度"和"内部温度"数据显示存在明显的延迟问题,查询时间长达数秒甚至数十秒。
性能瓶颈分析
通过对慢查询的深入分析,我们发现主要性能问题集中在以下 SQL 查询上:
WITH last_position AS (
SELECT date, convert_celsius(outside_temp, 'C') AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL AND date AT TIME ZONE 'Etc/UTC' >= (NOW() - interval '60m')
ORDER BY date DESC
LIMIT 1
),
last_charge AS (
SELECT date, convert_celsius(outside_temp, 'C') AS "Outside Temperature [°C]"
FROM charges
JOIN charging_processes ON charges.charging_process_id = charging_processes.id
WHERE car_id = '2' AND outside_temp IS NOT NULL AND date AT TIME ZONE 'Etc/UTC' >= (NOW() - interval '60m')
ORDER BY date DESC
LIMIT 1
)
SELECT * FROM last_position
UNION ALL
SELECT * FROM last_charge
ORDER BY date DESC
LIMIT 1;
该查询的设计初衷是获取最近60分钟内记录的车辆温度数据(优先从行驶位置数据获取,其次从充电数据获取)。但在实际执行中,特别是在数据量大的情况下,查询效率低下。
性能问题根源
- 索引利用不足:虽然表上有日期索引,但结合时区转换和范围条件的过滤导致索引无法高效使用
- 全表扫描:查询需要扫描大量不满足条件的记录才能找到符合时间范围的数据
- 复杂条件判断:时区转换和范围条件的组合增加了查询优化器的负担
- 低性能硬件影响:在Raspberry Pi等设备上,这些问题被进一步放大
优化方案
经过多次测试和验证,我们提出了两种优化方案:
方案一:使用窗口函数后过滤
WITH last_position AS (
SELECT date, convert_celsius(last_value(outside_temp) over (order by date desc), 'C') AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL
ORDER BY date DESC
LIMIT 1
),
-- 其他部分类似...
final as (
SELECT * FROM last_position
UNION ALL
SELECT * FROM last_charge
ORDER BY date desc
LIMIT 1
)
select * from final where date >= (NOW() at time zone 'UTC' - interval '60m')
方案二:条件表达式内联
WITH last_position AS (
SELECT date, case when date >= (NOW() at time zone 'UTC' - interval '60m')
then convert_celsius(last_value(outside_temp) over (order by date desc), 'C')
else null end AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL
ORDER BY date DESC
LIMIT 1
),
-- 其他部分类似...
优化效果
测试数据显示,优化后的查询性能显著提升:
- 执行时间从原来的100+秒降低到毫秒级
- 索引利用率提高,减少了不必要的全表扫描
- 查询计划更加简洁高效
实现建议
- 定期维护数据库:执行
VACUUM FULL ANALYZE和REINDEX命令保持数据库性能 - 简化查询逻辑:避免在WHERE子句中使用复杂的表达式和函数
- 合理使用窗口函数:对于获取最新记录的场景,窗口函数往往更高效
- 硬件考虑:在低性能设备上,应特别关注查询优化
总结
通过对TeslaMate仪表盘温度查询的优化,我们不仅解决了特定场景下的性能问题,也为类似的时间序列数据查询提供了优化思路。关键在于理解数据库如何利用索引、避免全表扫描,并根据实际硬件条件设计合适的查询方案。这些优化经验同样适用于其他基于时间序列数据的监控系统。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1