TeslaMate 仪表盘温度数据显示性能优化分析
2025-06-02 08:55:29作者:冯梦姬Eddie
问题背景
TeslaMate 是一款用于监控特斯拉车辆数据的开源工具,其内置的 Grafana 仪表盘提供了丰富的车辆信息展示功能。近期有用户反馈,在 Raspberry Pi 等低性能设备上运行时,仪表盘中的"驾驶员温度"、"外部温度"和"内部温度"数据显示存在明显的延迟问题,查询时间长达数秒甚至数十秒。
性能瓶颈分析
通过对慢查询的深入分析,我们发现主要性能问题集中在以下 SQL 查询上:
WITH last_position AS (
SELECT date, convert_celsius(outside_temp, 'C') AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL AND date AT TIME ZONE 'Etc/UTC' >= (NOW() - interval '60m')
ORDER BY date DESC
LIMIT 1
),
last_charge AS (
SELECT date, convert_celsius(outside_temp, 'C') AS "Outside Temperature [°C]"
FROM charges
JOIN charging_processes ON charges.charging_process_id = charging_processes.id
WHERE car_id = '2' AND outside_temp IS NOT NULL AND date AT TIME ZONE 'Etc/UTC' >= (NOW() - interval '60m')
ORDER BY date DESC
LIMIT 1
)
SELECT * FROM last_position
UNION ALL
SELECT * FROM last_charge
ORDER BY date DESC
LIMIT 1;
该查询的设计初衷是获取最近60分钟内记录的车辆温度数据(优先从行驶位置数据获取,其次从充电数据获取)。但在实际执行中,特别是在数据量大的情况下,查询效率低下。
性能问题根源
- 索引利用不足:虽然表上有日期索引,但结合时区转换和范围条件的过滤导致索引无法高效使用
- 全表扫描:查询需要扫描大量不满足条件的记录才能找到符合时间范围的数据
- 复杂条件判断:时区转换和范围条件的组合增加了查询优化器的负担
- 低性能硬件影响:在Raspberry Pi等设备上,这些问题被进一步放大
优化方案
经过多次测试和验证,我们提出了两种优化方案:
方案一:使用窗口函数后过滤
WITH last_position AS (
SELECT date, convert_celsius(last_value(outside_temp) over (order by date desc), 'C') AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL
ORDER BY date DESC
LIMIT 1
),
-- 其他部分类似...
final as (
SELECT * FROM last_position
UNION ALL
SELECT * FROM last_charge
ORDER BY date desc
LIMIT 1
)
select * from final where date >= (NOW() at time zone 'UTC' - interval '60m')
方案二:条件表达式内联
WITH last_position AS (
SELECT date, case when date >= (NOW() at time zone 'UTC' - interval '60m')
then convert_celsius(last_value(outside_temp) over (order by date desc), 'C')
else null end AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL
ORDER BY date DESC
LIMIT 1
),
-- 其他部分类似...
优化效果
测试数据显示,优化后的查询性能显著提升:
- 执行时间从原来的100+秒降低到毫秒级
- 索引利用率提高,减少了不必要的全表扫描
- 查询计划更加简洁高效
实现建议
- 定期维护数据库:执行
VACUUM FULL ANALYZE和REINDEX命令保持数据库性能 - 简化查询逻辑:避免在WHERE子句中使用复杂的表达式和函数
- 合理使用窗口函数:对于获取最新记录的场景,窗口函数往往更高效
- 硬件考虑:在低性能设备上,应特别关注查询优化
总结
通过对TeslaMate仪表盘温度查询的优化,我们不仅解决了特定场景下的性能问题,也为类似的时间序列数据查询提供了优化思路。关键在于理解数据库如何利用索引、避免全表扫描,并根据实际硬件条件设计合适的查询方案。这些优化经验同样适用于其他基于时间序列数据的监控系统。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218