TeslaMate 仪表盘温度数据显示性能优化分析
2025-06-02 15:26:16作者:冯梦姬Eddie
问题背景
TeslaMate 是一款用于监控特斯拉车辆数据的开源工具,其内置的 Grafana 仪表盘提供了丰富的车辆信息展示功能。近期有用户反馈,在 Raspberry Pi 等低性能设备上运行时,仪表盘中的"驾驶员温度"、"外部温度"和"内部温度"数据显示存在明显的延迟问题,查询时间长达数秒甚至数十秒。
性能瓶颈分析
通过对慢查询的深入分析,我们发现主要性能问题集中在以下 SQL 查询上:
WITH last_position AS (
SELECT date, convert_celsius(outside_temp, 'C') AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL AND date AT TIME ZONE 'Etc/UTC' >= (NOW() - interval '60m')
ORDER BY date DESC
LIMIT 1
),
last_charge AS (
SELECT date, convert_celsius(outside_temp, 'C') AS "Outside Temperature [°C]"
FROM charges
JOIN charging_processes ON charges.charging_process_id = charging_processes.id
WHERE car_id = '2' AND outside_temp IS NOT NULL AND date AT TIME ZONE 'Etc/UTC' >= (NOW() - interval '60m')
ORDER BY date DESC
LIMIT 1
)
SELECT * FROM last_position
UNION ALL
SELECT * FROM last_charge
ORDER BY date DESC
LIMIT 1;
该查询的设计初衷是获取最近60分钟内记录的车辆温度数据(优先从行驶位置数据获取,其次从充电数据获取)。但在实际执行中,特别是在数据量大的情况下,查询效率低下。
性能问题根源
- 索引利用不足:虽然表上有日期索引,但结合时区转换和范围条件的过滤导致索引无法高效使用
- 全表扫描:查询需要扫描大量不满足条件的记录才能找到符合时间范围的数据
- 复杂条件判断:时区转换和范围条件的组合增加了查询优化器的负担
- 低性能硬件影响:在Raspberry Pi等设备上,这些问题被进一步放大
优化方案
经过多次测试和验证,我们提出了两种优化方案:
方案一:使用窗口函数后过滤
WITH last_position AS (
SELECT date, convert_celsius(last_value(outside_temp) over (order by date desc), 'C') AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL
ORDER BY date DESC
LIMIT 1
),
-- 其他部分类似...
final as (
SELECT * FROM last_position
UNION ALL
SELECT * FROM last_charge
ORDER BY date desc
LIMIT 1
)
select * from final where date >= (NOW() at time zone 'UTC' - interval '60m')
方案二:条件表达式内联
WITH last_position AS (
SELECT date, case when date >= (NOW() at time zone 'UTC' - interval '60m')
then convert_celsius(last_value(outside_temp) over (order by date desc), 'C')
else null end AS "Outside Temperature [°C]"
FROM positions
WHERE car_id = '2' AND outside_temp IS NOT NULL
ORDER BY date DESC
LIMIT 1
),
-- 其他部分类似...
优化效果
测试数据显示,优化后的查询性能显著提升:
- 执行时间从原来的100+秒降低到毫秒级
- 索引利用率提高,减少了不必要的全表扫描
- 查询计划更加简洁高效
实现建议
- 定期维护数据库:执行
VACUUM FULL ANALYZE和REINDEX命令保持数据库性能 - 简化查询逻辑:避免在WHERE子句中使用复杂的表达式和函数
- 合理使用窗口函数:对于获取最新记录的场景,窗口函数往往更高效
- 硬件考虑:在低性能设备上,应特别关注查询优化
总结
通过对TeslaMate仪表盘温度查询的优化,我们不仅解决了特定场景下的性能问题,也为类似的时间序列数据查询提供了优化思路。关键在于理解数据库如何利用索引、避免全表扫描,并根据实际硬件条件设计合适的查询方案。这些优化经验同样适用于其他基于时间序列数据的监控系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248