深入理解LSTM长短期记忆网络
2025-06-04 04:05:40作者:龚格成
引言
长短期记忆网络(LSTM)是循环神经网络(RNN)的一种重要变体,专门设计用于解决传统RNN在处理长序列时遇到的梯度消失和梯度爆炸问题。本文将深入解析LSTM的工作原理、数学表达和实现细节,帮助读者全面理解这一强大的序列建模工具。
LSTM的核心思想
记忆单元与门控机制
LSTM的核心创新在于引入了记忆单元(Cell State)和门控机制。记忆单元作为信息传输的高速公路,能够在序列处理过程中保持相对不变的状态,从而有效缓解梯度消失问题。门控机制则负责调节信息的流动,包括:
- 输入门(Input Gate):控制新信息进入记忆单元的程度
- 遗忘门(Forget Gate):决定丢弃多少旧记忆
- 输出门(Output Gate):控制记忆单元对隐藏状态的输出
数学表达
LSTM的计算过程可以用以下方程表示:
- 输入门:
- 遗忘门:
- 输出门:
- 候选记忆单元:
- 记忆单元更新:
- 隐藏状态:
其中表示sigmoid函数,表示逐元素乘法。
从零实现LSTM
参数初始化
首先我们需要初始化LSTM的所有参数:
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)),
normal((num_hiddens, num_hiddens)),
torch.zeros(num_hiddens, device=device))
# 初始化各种门的参数
W_xi, W_hi, b_i = three() # 输入门
W_xf, W_hf, b_f = three() # 遗忘门
W_xo, W_ho, b_o = three() # 输出门
W_xc, W_hc, b_c = three() # 候选记忆单元
# 输出层参数
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o,
W_xc, W_hc, b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
状态初始化
LSTM需要初始化隐藏状态和记忆单元:
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device),
torch.zeros((batch_size, num_hiddens), device=device))
前向传播
实现LSTM的前向计算逻辑:
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o,
W_xc, W_hc, b_c, W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
# 计算三个门
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
# 计算候选记忆单元和更新记忆单元
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
# 计算隐藏状态和输出
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
使用高级API实现
现代深度学习框架都提供了LSTM的高级实现,使用起来更加方便:
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
LSTM的特点与优势
- 长期依赖建模:通过记忆单元和门控机制,LSTM能够学习长距离依赖关系
- 梯度稳定:相比普通RNN,LSTM能更好地缓解梯度消失问题
- 灵活的信息流控制:三个门控机制可以精细调节信息的保留和遗忘
应用建议
- 对于长序列任务,LSTM通常比普通RNN表现更好
- 超参数调整(如隐藏单元数、学习率)对模型性能影响较大
- 在某些任务上,GRU(门控循环单元)可能是更轻量级的替代方案
- 对于特别长的序列,可以考虑Transformer等更现代的架构
总结
LSTM通过引入记忆单元和门控机制,有效解决了传统RNN在长序列建模中的局限性。理解LSTM的工作原理对于掌握现代序列建模技术至关重要。本文从理论到实践全面介绍了LSTM,希望能帮助读者深入理解这一重要模型。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137