Forem项目中防止垃圾用户关注通知的技术实现
在开源社区平台Forem中,用户互动功能是社区活跃度的重要指标之一。其中,用户之间的关注机制是核心功能,但同时也面临着垃圾账号和恶意用户的挑战。本文将深入分析Forem平台如何通过技术手段防止垃圾用户关注通知的发送,保障用户体验。
背景与问题
在社交型平台中,用户关注机制通常会触发通知,告知被关注者有人关注了自己。然而,这一机制容易被垃圾账号或恶意用户利用,通过大量关注其他用户来发送垃圾通知。这不仅影响用户体验,还可能成为平台安全的隐患。
Forem平台最初通过延迟发送通知的方式来解决这个问题,即在新用户注册后的一段时间内不立即发送关注通知。这种方法确实能够拦截部分恶意行为,但存在一个明显的缺陷:它仅能过滤被标记为"suspended"(已停用)的用户,而无法识别标记为"spam"(垃圾)角色的用户。
技术实现方案
Forem平台的技术团队设计了一个双重过滤机制来解决这个问题:
-
角色基础过滤:系统会检查关注者的用户角色,过滤掉具有特定不良标记的用户。最初仅过滤"suspended"角色,现在扩展到了"spam"角色。
-
延迟发送机制:新用户注册后,系统不会立即发送其关注行为的通知,而是等待一段时间,观察该用户行为后再决定是否发送通知。
在代码实现层面,核心逻辑位于Notifications::NewFollower::Send服务中。该服务调用Follow.non_suspended方法来过滤被停用的用户,但最初版本没有包含对"spam"角色的检查。
解决方案优化
为了完善这一机制,技术团队进行了以下优化:
-
扩展过滤条件:修改Follow.non_suspended方法,使其不仅检查"suspended"角色,还要检查"spam"角色。
-
统一过滤逻辑:确保所有涉及用户关注通知的代码路径都使用相同的过滤标准,避免出现逻辑不一致的情况。
-
性能考量:在数据库查询层面进行优化,确保新增的过滤条件不会对系统性能产生显著影响。
技术细节
在实现上,主要涉及ActiveRecord查询的修改。例如:
scope :non_suspended, -> { joins(:follower).where.not(users: { role: [Role.suspended, Role.spam] }) }
这样的修改确保了无论是被停用还是被标记为垃圾的用户,其关注行为都不会触发通知发送。
总结
Forem平台通过不断完善用户行为过滤机制,有效防止了垃圾用户通过关注功能发送骚扰通知的问题。这一技术实现不仅提升了平台用户体验,也为其他社交型平台处理类似问题提供了参考。技术团队通过角色基础过滤和延迟发送机制的配合,在保证正常用户功能不受影响的前提下,有效遏制了垃圾行为。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00