CnosDB 导出数据时出现 "Too many open files" 问题的分析与解决
问题背景
在使用 CnosDB 数据库进行数据导出操作时,部分用户遇到了 "Too many open files" 的错误提示。这个问题通常出现在执行 COPY INTO 命令导出大量数据时,系统会报告无法打开文件,并显示操作系统错误代码 24。
问题现象
当用户尝试从 readings 表中导出数据时,系统返回错误信息:"Unable to open file: Too many open files (os error 24)"。通过检查系统进程打开的文件数量,发现该数值会急剧增长,在某些测试环境中甚至达到 70,000 个文件描述符。
根本原因分析
经过技术团队深入调查,发现问题源于 TsKv 存储引擎的读取机制。在数据导出过程中,系统会频繁打开数据文件进行读取操作,而默认的文件句柄缓存配置不足以应对大规模数据导出的场景。
具体来说,在 CnosDB 的 tseries_family 模块中,文件读取器的缓存机制存在优化空间。当并发读取请求过多时,系统会不断创建新的文件句柄,而不是有效复用已缓存的句柄,最终导致操作系统级别的文件描述符耗尽。
解决方案
针对这个问题,技术团队提出了以下解决方案:
-
调整 max_cached_readers 参数:通过增加该参数值(例如设置为 1024),可以显著减少系统打开的文件数量。测试表明,这一调整能够将打开文件数从数万个降低到仅 400 多个。
-
优化文件读取器缓存机制:在代码层面改进了文件句柄的管理策略,确保在数据导出过程中能够更有效地复用已打开的文件句柄。
实施建议
对于遇到类似问题的用户,建议采取以下措施:
-
检查当前系统的文件描述符限制(ulimit -n),确保其设置足够大以支持数据库操作。
-
在 CnosDB 配置文件中适当增加 max_cached_readers 参数值,根据实际数据量和并发需求进行调整。
-
对于大规模数据导出操作,考虑分批执行或增加导出操作的间隔时间,避免短时间内产生过多的文件操作。
总结
"Too many open files" 错误是数据库系统中常见的资源限制问题。通过理解 CnosDB 的文件管理机制并合理配置相关参数,可以有效避免这类问题的发生。技术团队将持续优化系统的资源管理策略,为用户提供更稳定、高效的数据操作体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00