Nilearn 0.12.0版本发布:神经影像分析工具的重大更新
2025-07-03 19:52:41作者:瞿蔚英Wynne
Nilearn是一个基于Python的神经影像分析工具库,它构建在scikit-learn之上,专门用于处理和分析神经影像数据(如fMRI、MRI等)。该库提供了从预处理到统计分析和可视化的完整工作流,极大简化了神经影像研究的复杂性。
核心功能改进
1. 表面数据处理能力增强
新版本显著提升了处理表面数据(surface data)的能力,这是神经影像分析中的重要数据类型。主要改进包括:
- 新增对表面图像阈值处理的支持,使研究人员能够更精确地控制统计显著性水平
- 扩展了
math_img和binarize_img函数以支持表面数据,为数学运算提供了更多灵活性 - 改进了
high_variance_confounds函数对表面数据的兼容性,提升了数据预处理质量 - 实现了表面数据的GLM(广义线性模型)结果保存功能,完善了分析流程
2. 图谱标准化与改进
图谱在神经影像研究中至关重要,新版本对图谱系统进行了多项优化:
- 为确定性图谱添加了查找表功能,使区域识别更加直观
- 改进了Yeo图谱的数据获取方式,提高了标准化程度
- 扩展了表面标签掩码器(SurfaceLabelsMasker)的策略选项,增加了分析灵活性
- 确保所有图谱都能被各种掩码器正确使用,提高了系统稳定性
技术架构优化
1. 绘图系统重构
绘图功能是Nilearn的重要组成部分,0.12.0版本进行了深度重构:
- 将绘图功能按类型划分为surface、matrix等专门模块,提高了代码组织性
- 分离了matplotlib和plotly的后端实现,为不同可视化需求提供了更多选择
- 改进了透明度和覆盖图显示效果,使可视化结果更加专业
- 新增了Bland-Altman图绘制功能,为方法比较提供了新工具
2. 估计器检查与验证
为确保分析质量,新版本强化了估计器检查机制:
- 实现了全面的参数类型检查,防止无效输入导致错误
- 增加了对估计器拟合前后参数一致性的验证
- 完善了变换器检查机制,确保数据处理流程的可靠性
- 添加了对空图像输入的检查,提高了鲁棒性
用户体验提升
1. 报告系统增强
报告功能让结果解释更加直观:
- 为基于表面的GLM添加了报告生成功能
- 改进了多运行GLM报告的用户体验
- 使用pandas创建参数HTML表格,提升了报告可读性
- 为无超阈值结果的情况添加了明确提示
2. 性能与兼容性
- 引入了性能基准测试系统,便于监控关键功能的执行效率
- 优化了大型fMRI图像的处理效率
- 提高了与最新版scikit-learn的兼容性
- 减少了不必要的警告信息,使输出更加清晰
总结
Nilearn 0.12.0版本通过增强表面数据处理能力、重构绘图系统、完善估计器验证机制和提升报告功能,为神经影像研究人员提供了更加强大、稳定的分析工具。这些改进不仅扩展了库的功能范围,也显著提升了用户体验和分析流程的可靠性,使复杂的神经影像分析变得更加高效和可重复。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1