dynamic-datasource与ShardingSphere整合时的数据源初始化优化
2025-06-10 18:38:17作者:廉彬冶Miranda
在使用dynamic-datasource与ShardingSphere进行整合时,可能会遇到分库数据源初始化时机的问题。本文将深入分析这一问题的成因,并提供专业的解决方案。
问题背景
在分布式系统中,dynamic-datasource作为多数据源管理工具,与ShardingSphere分库分表中间件结合使用时,会出现一个典型问题:ShardingSphere配置的多个分库数据源(如test_0到test_3)不会在应用启动时立即初始化,而是在第一次访问时才进行初始化。这会导致系统首次访问分库接口时出现明显的延迟。
技术原理分析
ShardingSphere通过其Driver方式配置数据源时,实际上创建的是一个逻辑数据源。真正的物理分库数据源是按需初始化的,这种延迟加载机制虽然能提高启动速度,但在生产环境中可能带来首次访问的性能问题。
dynamic-datasource本身提供了完善的数据源管理能力,但在与ShardingSphere集成时,需要特殊处理这种逻辑数据源与物理数据源的关系。
解决方案
我们可以通过扩展dynamic-datasource的数据源创建逻辑,在应用启动时主动触发ShardingSphere物理数据源的初始化。以下是实现方案的核心要点:
- 自定义数据源创建器:继承DruidDataSourceCreator,专门处理ShardingSphere数据源
- 主动连接触发:在创建数据源后立即获取并关闭连接,强制初始化底层物理数据源
- 优先级控制:确保自定义创建器在标准创建器之前执行
关键实现代码如下:
public class ShardingDruidDataSourceCreator extends DruidDataSourceCreator {
@Override
public DataSource createDataSource(DataSourceProperty dataSourceProperty) {
DataSource dataSource = super.createDataSource(dataSourceProperty);
try {
// 主动获取连接触发初始化
Connection connection = dataSource.getConnection();
connection.close();
log.info("分库分表数据源初始化完成");
} catch (SQLException e) {
throw new RuntimeException("数据源连接失败", e);
}
return dataSource;
}
@Override
public boolean support(DataSourceProperty dataSourceProperty) {
// 识别ShardingSphere数据源配置
return dataSourceProperty.getUrl().startsWith("jdbc:shardingsphere");
}
}
配置方式
需要在项目中通过自动配置类注册这个自定义创建器:
@AutoConfigureBefore(DynamicDataSourceAutoConfiguration.class)
@Configuration
public class ShardingDataSourceCreatorConfig {
// 设置比默认Druid创建器更高的优先级
public static final int SHARDING_SPHERE_ORDER = DynamicDataSourceCreatorAutoConfiguration.DRUID_ORDER - 1;
@Bean
@Order(SHARDING_SPHERE_ORDER)
public ShardingDruidDataSourceCreator shardingDruidDataSourceCreator() {
return new ShardingDruidDataSourceCreator();
}
}
方案优势
- 启动时初始化:将物理数据源初始化提前到应用启动阶段
- 无侵入性:通过标准扩展点实现,不影响原有功能
- 性能优化:消除了首次访问时的初始化延迟
- 健壮性增强:启动时即可发现数据源配置问题
最佳实践建议
- 对于生产环境,建议结合连接池配置合理设置初始化参数
- 可以监控数据源初始化时间,优化连接池配置
- 考虑在测试环境验证所有分库的连通性
- 对于大量分库的场景,可以分批初始化避免启动时间过长
这种方案既保持了ShardingSphere的灵活性,又解决了延迟初始化带来的性能问题,是两者整合时的理想选择。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648