dynamic-datasource与ShardingSphere整合时的数据源初始化优化
2025-06-10 22:01:08作者:廉彬冶Miranda
在使用dynamic-datasource与ShardingSphere进行整合时,可能会遇到分库数据源初始化时机的问题。本文将深入分析这一问题的成因,并提供专业的解决方案。
问题背景
在分布式系统中,dynamic-datasource作为多数据源管理工具,与ShardingSphere分库分表中间件结合使用时,会出现一个典型问题:ShardingSphere配置的多个分库数据源(如test_0到test_3)不会在应用启动时立即初始化,而是在第一次访问时才进行初始化。这会导致系统首次访问分库接口时出现明显的延迟。
技术原理分析
ShardingSphere通过其Driver方式配置数据源时,实际上创建的是一个逻辑数据源。真正的物理分库数据源是按需初始化的,这种延迟加载机制虽然能提高启动速度,但在生产环境中可能带来首次访问的性能问题。
dynamic-datasource本身提供了完善的数据源管理能力,但在与ShardingSphere集成时,需要特殊处理这种逻辑数据源与物理数据源的关系。
解决方案
我们可以通过扩展dynamic-datasource的数据源创建逻辑,在应用启动时主动触发ShardingSphere物理数据源的初始化。以下是实现方案的核心要点:
- 自定义数据源创建器:继承DruidDataSourceCreator,专门处理ShardingSphere数据源
- 主动连接触发:在创建数据源后立即获取并关闭连接,强制初始化底层物理数据源
- 优先级控制:确保自定义创建器在标准创建器之前执行
关键实现代码如下:
public class ShardingDruidDataSourceCreator extends DruidDataSourceCreator {
@Override
public DataSource createDataSource(DataSourceProperty dataSourceProperty) {
DataSource dataSource = super.createDataSource(dataSourceProperty);
try {
// 主动获取连接触发初始化
Connection connection = dataSource.getConnection();
connection.close();
log.info("分库分表数据源初始化完成");
} catch (SQLException e) {
throw new RuntimeException("数据源连接失败", e);
}
return dataSource;
}
@Override
public boolean support(DataSourceProperty dataSourceProperty) {
// 识别ShardingSphere数据源配置
return dataSourceProperty.getUrl().startsWith("jdbc:shardingsphere");
}
}
配置方式
需要在项目中通过自动配置类注册这个自定义创建器:
@AutoConfigureBefore(DynamicDataSourceAutoConfiguration.class)
@Configuration
public class ShardingDataSourceCreatorConfig {
// 设置比默认Druid创建器更高的优先级
public static final int SHARDING_SPHERE_ORDER = DynamicDataSourceCreatorAutoConfiguration.DRUID_ORDER - 1;
@Bean
@Order(SHARDING_SPHERE_ORDER)
public ShardingDruidDataSourceCreator shardingDruidDataSourceCreator() {
return new ShardingDruidDataSourceCreator();
}
}
方案优势
- 启动时初始化:将物理数据源初始化提前到应用启动阶段
- 无侵入性:通过标准扩展点实现,不影响原有功能
- 性能优化:消除了首次访问时的初始化延迟
- 健壮性增强:启动时即可发现数据源配置问题
最佳实践建议
- 对于生产环境,建议结合连接池配置合理设置初始化参数
- 可以监控数据源初始化时间,优化连接池配置
- 考虑在测试环境验证所有分库的连通性
- 对于大量分库的场景,可以分批初始化避免启动时间过长
这种方案既保持了ShardingSphere的灵活性,又解决了延迟初始化带来的性能问题,是两者整合时的理想选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178