AWS Load Balancer Controller中NLB资源残留问题分析
在Kubernetes环境中使用AWS Load Balancer Controller时,用户可能会遇到一个典型问题:当删除相关Service资源后,对应的Network Load Balancer(NLB)资源并未被自动清理,导致AWS账户中残留未使用的负载均衡器。这种情况在使用Gateway API实现(如Envoy Gateway或Cilium Gateway)时尤为常见。
问题现象
当用户通过Kubernetes声明式API创建LoadBalancer类型的Service时,AWS Load Balancer Controller会自动在AWS账户中创建对应的NLB资源。理想情况下,当用户删除Kubernetes中的Service资源时,Controller应该同步清理AWS中的NLB资源。但实际观察到的现象是:
- 删除Kubernetes中的Gateway或Service资源后
- AWS控制台中对应的NLB仍然存在
- 查看Controller日志,虽然显示了目标组和安全组的删除操作,但没有NLB本身的删除记录
根本原因
这个问题通常不是AWS Load Balancer Controller本身的缺陷,而是与上层抽象组件的实现方式有关。具体来说:
-
资源所有权问题:当使用Gateway API时(如Envoy Gateway),NLB实际上是由Gateway控制器而非直接由Service资源创建的。这种间接创建方式可能导致资源清理责任不明确。
-
Finalizer机制:Kubernetes的Finalizer机制确保资源在被完全清理前不会被立即删除。如果Gateway控制器没有正确实现Finalizer逻辑,可能导致资源清理流程中断。
-
注解传递问题:Service上的特定注解(如
service.beta.kubernetes.io/aws-load-balancer-type
)可能没有被正确传递给底层控制器,影响清理决策。
解决方案
对于使用Envoy Gateway的用户:
- 确保使用Envoy Gateway v0.6.0之后的版本,该问题已在后续版本中修复
- 检查EnvoyProxy自定义资源中的服务注解配置是否正确
- 验证Gateway控制器的Finalizer配置
对于使用其他Gateway实现的用户:
- 检查对应Gateway控制器的版本和已知问题
- 确保Gateway资源被完全删除(包括Finalizer)
- 必要时手动清理AWS中的残留资源
最佳实践
为避免NLB资源残留问题,建议:
-
版本管理:始终保持AWS Load Balancer Controller和Gateway实现组件为最新稳定版本
-
监控配置:设置CloudWatch警报,监控未使用的NLB资源
-
清理策略:建立定期检查机制,清理孤立的AWS资源
-
测试验证:在预发布环境中测试资源删除流程,确保清理行为符合预期
总结
AWS Load Balancer Controller与Gateway API的集成提供了强大的负载均衡管理能力,但多层抽象也可能引入资源管理复杂性。理解各组件间的交互关系,保持组件版本更新,并建立完善的资源监控机制,是确保云资源高效管理的关键。当遇到NLB残留问题时,应首先检查上层抽象组件(如Envoy Gateway)的实现情况,而非直接归因于AWS Load Balancer Controller。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~093Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









