Elastic Detection-Rules项目新增AzureHound检测规则的技术解析
背景与重要性
在云安全领域,Azure环境的威胁检测一直是安全团队关注的重点。近期,Elastic Detection-Rules项目中新增了对AzureHound工具的检测规则,这一举措对于提升Azure环境的安全性具有重要意义。
AzureHound是由SpecterOps开发的一款针对Azure环境的发现和枚举工具。虽然它本身是一个合法的安全评估工具,但近年来被越来越多的红队和攻击者滥用,特别是在针对Azure环境的攻击活动中。微软安全团队在最近的报告中提到,某些攻击组织就曾使用这类工具进行恶意活动。
检测方案设计
Elastic安全团队针对AzureHound的检测主要设计了两类规则,覆盖了该工具的两种主要使用方式:
1. 基于用户代理的检测
这种方法针对AzureHound工具的Go语言版本实现。该版本在HTTP请求中使用特定的用户代理字符串"AzureHound/*"作为指纹特征。这种检测方式可以应用于多种数据源,但主要聚焦于Azure和Microsoft 365相关的日志数据。
技术实现上,安全团队会监控各种云服务日志中的User-Agent字段,特别是Azure活动日志和M365安全日志,寻找这一特征字符串的出现。
2. 基于调用行为的检测
这种方法针对较旧的PowerShell封装版本,该版本通过"Invoke-Azurehound"cmdlet在Windows系统上执行。虽然这种方法被认为是传统方式,但在最近的攻击活动中仍然被观察到使用。
检测实现主要依赖Elastic Defend终端安全解决方案和Winlogbeat日志收集器,通过监控PowerShell的调用行为和特定命令的执行来识别可疑活动。
技术价值分析
这两类规则的组合提供了对AzureHound工具的全面覆盖,既有对新版Go实现的检测,也有对传统PowerShell版本的防护。这种分层防御策略在安全工程中尤为重要,因为攻击者往往会根据目标环境选择不同的工具版本或使用方式。
值得注意的是,基于用户代理的检测虽然简单直接,但也很容易被攻击者修改绕过。因此,结合基于行为的检测可以提供更深层次的防护。当攻击者试图修改用户代理字符串时,他们仍然可能通过特定的调用模式暴露自己。
实施建议
对于使用Elastic安全解决方案的企业,建议:
- 
确保相关日志源已正确配置并接入SIEM系统,特别是Azure活动日志、M365安全日志和终端安全事件。
 - 
定期验证这些检测规则的有效性,可以通过模拟攻击的方式测试检测能力。
 - 
将这些检测规则与其他云安全监控措施结合使用,形成完整的云安全防护体系。
 - 
对于高价值目标,可以考虑在这些基础规则上增加自定义规则,以检测更隐蔽的攻击变种。
 
未来展望
随着云攻击技术的不断演进,检测规则也需要持续更新。未来可能会看到更多基于机器学习的行为检测方法,能够识别更隐蔽的云环境枚举活动。同时,随着AzureHound等工具的更新,检测规则也需要相应调整以保持有效性。
安全团队应保持对云安全威胁情报的关注,及时将新的攻击手法转化为检测能力,确保防护措施始终领先于攻击者的技术演进。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00