Elastic Detection-Rules项目新增AzureHound检测规则的技术解析
背景与重要性
在云安全领域,Azure环境的威胁检测一直是安全团队关注的重点。近期,Elastic Detection-Rules项目中新增了对AzureHound工具的检测规则,这一举措对于提升Azure环境的安全性具有重要意义。
AzureHound是由SpecterOps开发的一款针对Azure环境的发现和枚举工具。虽然它本身是一个合法的安全评估工具,但近年来被越来越多的红队和攻击者滥用,特别是在针对Azure环境的攻击活动中。微软安全团队在最近的报告中提到,某些攻击组织就曾使用这类工具进行恶意活动。
检测方案设计
Elastic安全团队针对AzureHound的检测主要设计了两类规则,覆盖了该工具的两种主要使用方式:
1. 基于用户代理的检测
这种方法针对AzureHound工具的Go语言版本实现。该版本在HTTP请求中使用特定的用户代理字符串"AzureHound/*"作为指纹特征。这种检测方式可以应用于多种数据源,但主要聚焦于Azure和Microsoft 365相关的日志数据。
技术实现上,安全团队会监控各种云服务日志中的User-Agent字段,特别是Azure活动日志和M365安全日志,寻找这一特征字符串的出现。
2. 基于调用行为的检测
这种方法针对较旧的PowerShell封装版本,该版本通过"Invoke-Azurehound"cmdlet在Windows系统上执行。虽然这种方法被认为是传统方式,但在最近的攻击活动中仍然被观察到使用。
检测实现主要依赖Elastic Defend终端安全解决方案和Winlogbeat日志收集器,通过监控PowerShell的调用行为和特定命令的执行来识别可疑活动。
技术价值分析
这两类规则的组合提供了对AzureHound工具的全面覆盖,既有对新版Go实现的检测,也有对传统PowerShell版本的防护。这种分层防御策略在安全工程中尤为重要,因为攻击者往往会根据目标环境选择不同的工具版本或使用方式。
值得注意的是,基于用户代理的检测虽然简单直接,但也很容易被攻击者修改绕过。因此,结合基于行为的检测可以提供更深层次的防护。当攻击者试图修改用户代理字符串时,他们仍然可能通过特定的调用模式暴露自己。
实施建议
对于使用Elastic安全解决方案的企业,建议:
-
确保相关日志源已正确配置并接入SIEM系统,特别是Azure活动日志、M365安全日志和终端安全事件。
-
定期验证这些检测规则的有效性,可以通过模拟攻击的方式测试检测能力。
-
将这些检测规则与其他云安全监控措施结合使用,形成完整的云安全防护体系。
-
对于高价值目标,可以考虑在这些基础规则上增加自定义规则,以检测更隐蔽的攻击变种。
未来展望
随着云攻击技术的不断演进,检测规则也需要持续更新。未来可能会看到更多基于机器学习的行为检测方法,能够识别更隐蔽的云环境枚举活动。同时,随着AzureHound等工具的更新,检测规则也需要相应调整以保持有效性。
安全团队应保持对云安全威胁情报的关注,及时将新的攻击手法转化为检测能力,确保防护措施始终领先于攻击者的技术演进。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00