Trieve项目中搜索结果一致性的优化方案
2025-07-04 08:06:23作者:昌雅子Ethen
在开源项目Trieve的搜索功能开发过程中,开发团队发现了一个影响用户体验的重要问题:当用户提出后续问题时,系统会重新执行搜索操作,导致前后回答结果不一致。本文将深入分析这一问题及其解决方案。
问题背景
在电商搜索场景中,用户通常会先提出一个基础问题,然后基于返回结果进行后续提问。例如用户先询问"展示一些运动鞋",然后跟进提问"哪双最便宜"。理想情况下,系统应该在第一次搜索结果的上下文中回答后续问题,而不是重新执行搜索。
然而当前实现存在以下缺陷:
- 每次提问都会触发独立搜索
- 后续问题的答案与初始结果脱节
- 返回的JSON数据结构和Clickhouse查询被不必要地覆盖
技术分析
问题的核心在于搜索逻辑没有考虑对话的上下文连续性。具体表现为:
- 搜索隔离:每个问题都被视为独立查询,缺乏对话记忆
- 数据不一致:后续搜索可能返回完全不同的结果集
- 资源浪费:重复执行不必要的数据库查询
解决方案架构
团队设计了一套完整的改进方案,主要包含以下关键组件:
1. 对话状态追踪
引入专门的工具调用(tool call)来识别对话是否为后续问题。这个机制会记录:
- 当前是否为后续提问
- 初始搜索的上下文信息
- 用户意图的变化轨迹
2. 上下文感知搜索
开发新的buildRAGContext函数,在生成消息前动态调整搜索参数:
- 保留初始搜索的
group_ids过滤器 - 避免重复执行相同查询
- 确保结果集一致性
3. 结果优化流程
改进后的工作流程分为四个阶段:
- 使用价格和标签过滤器判断是否需要实际搜索
- 通过LLM生成优化的搜索查询
- 结合用户查询和AI生成查询执行相关性排序
- 修改
create_message接口直接使用已有chunk_ids
实现细节
技术实现上需要注意几个关键点:
- 数据结构保护:确保返回的chunks JSON结构不被意外修改
- 查询优化:避免Clickhouse查询被不必要地重写
- 上下文传递:在对话链中有效保持搜索上下文
- 性能平衡:在结果一致性和系统响应速度间取得平衡
用户体验改进
该解决方案将显著提升以下用户体验指标:
- 对话连贯性:后续问题能准确基于之前的结果回答
- 结果可预测性:用户不会因为相同问题得到不同答案
- 交互效率:减少用户需要重复说明的情况
总结
Trieve项目通过引入对话状态管理和上下文感知搜索,有效解决了电商搜索场景中的结果一致性问题。这一改进不仅提升了用户体验,也为复杂对话系统的设计提供了有价值的参考模式。未来可考虑扩展应用到更多需要保持上下文一致的搜索场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
331
395
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
暂无简介
Dart
766
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
747
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
352