Trieve项目中搜索结果一致性的优化方案
2025-07-04 07:47:18作者:昌雅子Ethen
在开源项目Trieve的搜索功能开发过程中,开发团队发现了一个影响用户体验的重要问题:当用户提出后续问题时,系统会重新执行搜索操作,导致前后回答结果不一致。本文将深入分析这一问题及其解决方案。
问题背景
在电商搜索场景中,用户通常会先提出一个基础问题,然后基于返回结果进行后续提问。例如用户先询问"展示一些运动鞋",然后跟进提问"哪双最便宜"。理想情况下,系统应该在第一次搜索结果的上下文中回答后续问题,而不是重新执行搜索。
然而当前实现存在以下缺陷:
- 每次提问都会触发独立搜索
- 后续问题的答案与初始结果脱节
- 返回的JSON数据结构和Clickhouse查询被不必要地覆盖
技术分析
问题的核心在于搜索逻辑没有考虑对话的上下文连续性。具体表现为:
- 搜索隔离:每个问题都被视为独立查询,缺乏对话记忆
- 数据不一致:后续搜索可能返回完全不同的结果集
- 资源浪费:重复执行不必要的数据库查询
解决方案架构
团队设计了一套完整的改进方案,主要包含以下关键组件:
1. 对话状态追踪
引入专门的工具调用(tool call)来识别对话是否为后续问题。这个机制会记录:
- 当前是否为后续提问
- 初始搜索的上下文信息
- 用户意图的变化轨迹
2. 上下文感知搜索
开发新的buildRAGContext函数,在生成消息前动态调整搜索参数:
- 保留初始搜索的
group_ids过滤器 - 避免重复执行相同查询
- 确保结果集一致性
3. 结果优化流程
改进后的工作流程分为四个阶段:
- 使用价格和标签过滤器判断是否需要实际搜索
- 通过LLM生成优化的搜索查询
- 结合用户查询和AI生成查询执行相关性排序
- 修改
create_message接口直接使用已有chunk_ids
实现细节
技术实现上需要注意几个关键点:
- 数据结构保护:确保返回的chunks JSON结构不被意外修改
- 查询优化:避免Clickhouse查询被不必要地重写
- 上下文传递:在对话链中有效保持搜索上下文
- 性能平衡:在结果一致性和系统响应速度间取得平衡
用户体验改进
该解决方案将显著提升以下用户体验指标:
- 对话连贯性:后续问题能准确基于之前的结果回答
- 结果可预测性:用户不会因为相同问题得到不同答案
- 交互效率:减少用户需要重复说明的情况
总结
Trieve项目通过引入对话状态管理和上下文感知搜索,有效解决了电商搜索场景中的结果一致性问题。这一改进不仅提升了用户体验,也为复杂对话系统的设计提供了有价值的参考模式。未来可考虑扩展应用到更多需要保持上下文一致的搜索场景中。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869