使用Unity实现机器学习驱动的Roguelike游戏教程
项目介绍
Unity Technologies 的 MachineLearningRoguelike 是一个小型的Roguelike游戏示例,该游戏利用机器学习技术来驱动其实体行为。玩家角色和敌人均通过ML Agents进行控制,提供了一个真实游戏环境中测试机器学习能力的良好平台。该演示包括一个特别设计的训练场景,展示了如何在不同于实际游戏环境的环境中训练代理。此外,项目中运用了Cinemachine来支持2D和Tilemap,非常适合对机器学习在游戏中的应用感兴趣的开发者学习。此项目曾在Codemotion米兰站和DevGAMM明斯克站由Ciro Continisio及Alessia Nigretti进行分享。
项目快速启动
环境准备
- 必备软件: Unity 2017.2 或更高版本。
- 硬件需求: 任何Windows或Mac系统电脑。
- 安装TensorFlowSharp: 将Tensorflow Sharp插件添加到Unity项目的
Assets文件夹中。具体步骤见官方指南。 - Python API: 确保系统已安装Python API,并将
python文件夹从ML-Agents仓库下载后放置于项目根目录外(遵照外部训练项目设置)。
启动步骤
-
克隆项目: 使用Git克隆项目至本地:
git clone https://github.com/UnityTechnologies/MachineLearningRoguelike.git -
配置Unity项目: 打开
.unity项目文件,在Unity Editor中确认所有依赖项正确导入。 -
运行游戏: 在确保配置正确的环境下,点击Unity编辑器中的播放按钮即可开始游戏。如需训练代理,请遵循ML-Agents提供的训练指令进行。
应用案例和最佳实践
本项目作为应用案例,展示了如何在复杂的游戏环境中集成和训练机器学习模型。最佳实践中,重点在于理解如何通过调整ML-Agent参数来优化学习过程,以及如何利用Cinemachine和Unity的Tilemap系统创建高效的学习环境。对于开发者来说,这不仅是学习机器学习如何影响游戏逻辑的机会,也是了解如何在游戏开发中结合先进AI技术的最佳实例。
典型生态项目
虽然本项目自身就是整合Unity和机器学习的一个范例,但相关生态系统还包括多个使用Unity ML-Agents框架的其他游戏项目和实验。开发者可以探索Unity论坛、社区博客以及GitHub上的其他类似项目,以发现更多灵感和技术应用。例如,研究不同类型的代理训练策略,或者将机器学习应用于角色智能行为、自动生成关卡等方面,都是这一领域内的活跃方向。
这个教程提供了开始探索使用Unity ML-Agents开发机器学习驱动游戏的基础。通过跟随这些步骤,开发者不仅可以快速上手该项目,还能深入了解如何在实际游戏中实施复杂的机器学习算法。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00