在HELM项目中运行本地LoRA模型基准测试的实践指南
2025-07-03 06:46:42作者:江焘钦
背景介绍
HELM(Holistic Evaluation of Language Models)是斯坦福CRFM开发的一个用于全面评估语言模型的框架。在实际应用中,研究人员经常需要评估自己微调后的模型性能,特别是使用LoRA(Low-Rank Adaptation)技术微调的模型。本文将详细介绍如何在HELM框架中运行本地训练的LoRA模型基准测试。
问题分析
当尝试在HELM中运行本地训练的LoRA模型时,用户可能会遇到模型加载失败的问题,错误提示为找不到标准的模型权重文件(如pytorch_model.bin或model.safetensors)。这是因为HELM默认使用Hugging Face的AutoModelForCausalLM.from_pretrained()方法来加载模型,而该方法期望找到完整的模型权重文件。
解决方案
环境配置关键
-
创建专用环境:建议新建一个Python虚拟环境,而不是在现有HELM环境中直接添加依赖
-
安装必要依赖:
- 先安装axolotl及其依赖(包括tlr和deepspeed)
- 再安装HELM框架
-
验证环境:确保能成功执行以下代码
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("/path/to/lora-out", device_map="auto")
配置文件设置
HELM需要三个关键配置文件来定义模型和运行参数:
- model_deployments.yaml - 定义模型部署配置
model_deployments:
- name: huggingface/lora-out
model_name: your_namespace/lora-out
tokenizer_name: your_namespace/lora-out
max_sequence_length: 131072
client_spec:
class_name: "helm.clients.huggingface_client.HuggingFaceClient"
args:
pretrained_model_name_or_path: /absolute_path_to_model/lora-out
device_map: auto
- model_metadata.yaml - 定义模型元数据
models:
- name: your_namespace/lora-out
display_name: lora-out
description: 自定义描述
creator_organization_name: your_org
access: Limited
num_parameters: 8043892736
release_date: 2024-08-13
tags: [TEXT_MODEL_TAG, PARTIAL_FUNCTIONALITY_TEXT_MODEL_TAG]
- tokenizer_configs.yaml - 定义分词器配置
tokenizer_configs:
- name: your_namespace/lora-out
tokenizer_spec:
class_name: "helm.tokenizers.huggingface_tokenizer.HuggingFaceTokenizer"
args:
pretrained_model_name_or_path: /absolute_path_to_model/lora-out
运行基准测试
配置完成后,可以使用以下命令运行基准测试:
export SCHEMA_PATH=src/helm/benchmark/static/schema_lite.yaml
export RUN_ENTRIES_CONF_PATH=src/helm/benchmark/presentation/run_entries_lite_20240424.conf
export NUM_TRAIN_TESTS=1
export MAX_EVAL_INSTANCES=1000
export PRIORITY=2
export SUITE_NAME=my-suite
export MODELS_TO_RUN=your_namespace/lora-out
helm-run --conf-paths $RUN_ENTRIES_CONF_PATH \
--num-train-tests $NUM_TRAIN_TESTS \
--max-eval-instances $MAX_EVAL_INSTANCES \
--priority $PRIORITY \
--suite $SUITE_NAME \
--models-to-run $MODELS_TO_RUN
技术要点解析
-
LoRA模型加载机制:HELM底层使用Hugging Face Transformers库加载模型,需要确保环境中有正确的适配器加载支持
-
设备映射:通过
device_map: auto参数让Hugging Face自动分配模型到可用设备 -
基准测试流程:
- 首先加载场景和适配器配置
- 然后预处理评估实例
- 最后并行执行模型推理
-
常见问题排查:
- 确保模型目录包含所有必要文件(adapter_model.safetensors等)
- 检查Python环境是否包含所有必要的LoRA支持库
- 验证CUDA/cuDNN版本兼容性
最佳实践建议
- 对于大型模型评估,建议使用分布式设置
- 在运行完整基准测试前,先用少量实例验证配置
- 监控GPU内存使用情况,必要时调整batch size
- 考虑使用模型量化技术减少内存占用
- 保存完整的运行日志以便后续分析
通过以上步骤,研究人员可以在HELM框架中有效地评估本地训练的LoRA模型性能,为模型优化和改进提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328