PyTorch Vision中COCO数据集对压缩RLE掩码格式的支持
2025-05-13 19:13:05作者:董灵辛Dennis
在计算机视觉领域,COCO数据集格式因其丰富的标注信息而广受欢迎。PyTorch Vision库提供了对COCO格式的原生支持,但在处理分割掩码时存在一些格式兼容性问题,特别是对于压缩RLE格式的支持不够完善。
COCO数据集中的掩码格式
COCO数据集支持三种主要的分割掩码表示形式:
- 多边形格式:当标注中的
iscrowd属性为0时使用,表示单个物体,格式为顶点坐标列表 - 未压缩RLE格式:当
iscrowd为1时使用,表示人群等密集物体,格式为计数字典 - 压缩RLE格式:未压缩RLE的编码版本,使用字符串表示计数
问题背景
PyTorch Vision的CocoDetection数据集类及其转换包装器wrap_dataset_for_transforms_v2在处理掩码时,原本只支持多边形和未压缩RLE格式。当遇到压缩RLE格式的掩码时,会抛出值错误,因为内部转换函数segmentation_to_mask无法正确处理字符串形式的计数。
技术解决方案
为解决这一问题,PyTorch Vision团队对掩码处理逻辑进行了改进,增加了对压缩RLE格式的支持。新的处理流程如下:
- 首先检查掩码计数是否为字符串格式(压缩RLE)
- 如果是字符串格式,直接解码
- 如果是字典格式(未压缩RLE),先转换为压缩格式再解码
- 如果是多边形格式,先合并多边形再转换为RLE格式
实现细节
改进后的掩码处理函数采用了更健壮的条件判断逻辑:
def segmentation_to_mask(segmentation, *, canvas_size):
if isinstance(segmentation["counts"], str):
# 直接处理压缩RLE格式
pass
elif isinstance(segmentation, dict):
# 处理未压缩RLE格式
segmentation = mask.frPyObjects(segmentation, *canvas_size)
else:
# 处理多边形格式
segmentation = mask.merge(mask.frPyObjects(segmentation, *canvas_size))
return torch.from_numpy(mask.decode(segmentation))
实际应用
这一改进使得PyTorch Vision能够无缝处理各种COCO格式的数据集,包括那些使用压缩RLE格式标注的数据集。用户现在可以像往常一样使用CocoDetection类加载数据集,并通过wrap_dataset_for_transforms_v2进行转换,无需担心底层掩码格式的差异。
总结
PyTorch Vision对压缩RLE掩码格式的支持增强,进一步提升了其在计算机视觉任务中的适用性和灵活性。这一改进使得框架能够处理更广泛的公开数据集和自定义数据集,为研究人员和开发者提供了更强大的工具支持。
对于需要使用COCO格式数据集进行分割任务的用户,现在可以放心地使用PyTorch Vision提供的高级API,而无需担心底层数据格式的兼容性问题。这一改进也体现了PyTorch生态对实际应用场景需求的快速响应能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355