DeepLabCut中Transformer re-ID训练中的关键Bug修复与性能提升
2025-06-09 07:44:02作者:何举烈Damon
问题背景
在DeepLabCut的PyTorch引擎中,当使用Transformer进行re-ID(重识别)训练时,发现了一个关键性Bug。该Bug位于query_feature_by_coord_in_img_space()函数中,影响了特征匹配的准确性,导致模型训练准确率只能达到50-60%的水平。
Bug分析
该函数的核心功能是通过坐标匹配从特征字典中检索最接近的特征。原始实现存在以下问题:
- NaN值处理不当:当计算坐标差异时,大量元素被替换为NaN值
- 均值计算缺陷:当整个切片都是NaN时,
np.nanmean无法计算有效均值 - 最小值索引错误:
np.argmin对NaN值的处理不当,会将第一个NaN值视为最小值
具体表现为:
- 当
diff数组中包含全NaN的切片时,np.nanmean会返回NaN np.argmin会错误地将第一个NaN值的索引作为结果返回- 导致特征匹配错误,选择了不正确的动物个体
解决方案
通过引入np.ma.masked_invalid来正确处理NaN值:
def query_feature_by_coord_in_img_space(feature_dict, frame_id, ref_coord):
features = feature_dict[frame_id]["features"]
coordinates = feature_dict[frame_id]["coordinates"]
diff = coordinates - ref_coord
diff[np.where(np.logical_or(diff > 9000, diff < 0))] = np.nan
masked_means = np.ma.masked_invalid(np.nanmean(diff, axis=(1, 2)))
match_id = np.argmin(masked_means)
return features[match_id]
改进后的方法:
- 使用
np.ma.masked_invalid显式屏蔽无效值 - 确保
np.argmin只考虑有效数值 - 正确匹配最接近的动物个体特征
性能对比
修复前表现
- 训练准确率:64-65%
- 测试准确率:54-55%
- 模型无法有效学习区分不同个体
修复后表现
- 训练准确率:95-100%
- 测试准确率:95-100%
- 模型能够完美区分不同个体
技术意义
这个修复对于DeepLabCut的多动物追踪具有重要意义:
- 提升re-ID准确性:确保Transformer模型能够正确学习个体特征
- 增强追踪稳定性:减少因特征匹配错误导致的ID切换
- 验证数据处理重要性:展示了正确处理边缘情况对模型性能的关键影响
最佳实践建议
- 在使用re-ID功能时,建议检查特征匹配的准确性
- 对于自定义实现,应特别注意NaN值的处理
- 训练过程中监控匹配准确率,可帮助早期发现问题
- 考虑增加额外的验证步骤确保特征匹配正确性
这个修复已被纳入DeepLabCut主分支,将显著提升多动物追踪场景下的re-ID性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246