Apache Arrow-RS对象存储模块中Reqwest压缩特性引发的问题分析
Apache Arrow-RS项目中的对象存储(object_store)模块在与HTTP服务器交互时,当Reqwest客户端启用了某些压缩特性时会出现异常行为。本文将深入分析这一问题的技术背景、产生原因以及解决方案。
问题现象
在使用object_store模块通过HTTP协议访问远程存储时,如果Reqwest客户端启用了gzip、deflate、brotli或zstd等压缩特性,会导致请求失败并返回"MissingContentLength"错误。这一现象特别容易在以下场景中出现:
- 客户端Reqwest配置了压缩特性
- 服务端支持并启用了对应的压缩算法
- 服务端响应使用了压缩编码
技术背景
HTTP协议支持通过内容编码(Content-Encoding)机制对响应体进行压缩传输。常见的压缩算法包括gzip、deflate、brotli和zstd等。当客户端在请求头中包含Accept-Encoding字段时,服务端可以选择使用其中一种算法压缩响应体。
在Reqwest客户端中,这些压缩特性是可选的。当启用某个压缩特性时,Reqwest会自动在请求中添加对应的Accept-Encoding头,表明客户端支持该压缩算法。
问题根源
问题的核心在于压缩响应与内容长度(Content-Length)头部的交互。当服务端使用压缩响应时:
- Content-Length头部表示的是压缩后的数据长度,而非原始数据长度
- 许多服务端在压缩响应时会省略Content-Length头部
- object_store模块依赖Content-Length头部来确定数据大小
此外,Reqwest客户端在接收到压缩响应后会自动解压缩,但解压缩后的数据长度可能与原始Content-Length不匹配,或者当Content-Length缺失时会导致object_store模块无法正确处理响应。
解决方案
针对这一问题,社区已经提出了几种解决方案:
-
显式禁用Reqwest的自动压缩功能:通过调用ClientBuilder的no_gzip()方法可以禁用gzip压缩,但这种方法对其他压缩算法无效。
-
全面禁用所有压缩特性:在Reqwest客户端构建时,需要确保禁用所有可能的压缩特性,包括gzip、deflate、brotli和zstd等。
-
改进object_store模块的HTTP响应处理逻辑,使其不依赖Content-Length头部,或者能够正确处理压缩响应。
最佳实践
对于使用object_store模块的开发者,建议采取以下措施:
- 在构建Reqwest客户端时,明确禁用所有压缩特性
- 如果必须使用压缩,确保服务端配置正确,并且客户端能够处理可能的Content-Length缺失情况
- 考虑在object_store的HTTP后端实现中增加对分块传输编码的支持
总结
HTTP压缩虽然能减少网络传输数据量,但在与对象存储系统交互时可能带来兼容性问题。Apache Arrow-RS项目中的object_store模块需要特别注意Reqwest客户端的压缩配置,以避免因内容长度不一致导致的错误。开发者应当根据实际需求权衡压缩带来的性能提升与潜在的兼容性问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00