ROLL 的项目扩展与二次开发
2025-05-31 06:47:11作者:庞队千Virginia
1. 项目的基础介绍
ROLL(Reinforcement Learning Optimization for Large-Scale Learning)是一个专为大规模学习设计的强化学习库。它针对大型语言模型(LLMs)利用大规模GPU资源,显著提升LLM在人类偏好对齐、复杂推理和多轮代理交互场景中的性能。ROLL 利用 Ray 的多角色分布式架构,实现灵活的资源分配和异构任务调度,集成了 Megatron-Core、SGLang 和 vLLM 等前沿技术,以加速模型训练和推理。
2. 项目的核心功能
- 高效的资源利用:ROLL 充分利用高性能硬件,加速强化学习训练,显著降低大规模GPU集群的训练成本和时间。
- 可扩展性和容错性:支持广泛的LLM训练和优化技术,实现跨数千GPU训练200B+参数的模型,并具有高效的检查点恢复机制以减少停机时间。
- 灵活的硬件使用:支持在不同类型的硬件上执行强化学习训练,用户可以选择同地或解耦部署,配置同步或异步执行模式,以充分利用不同的硬件架构。
- 多样的奖励和环境:实现了一套奖励和环境的工人(Reward Worker 和 Environment Worker),易于根据现有实现定制自己的奖励和环境。
- 优化的样本奖励路由:提供用户友好的接口,控制任务间样本抽样比例,动态路由样本到适当的奖励工人。
- 丰富的训练配方:提供多种强化学习算法、LLM、任务和数据集,减少新训练特性所需的工程努力。
3. 项目使用了哪些框架或库?
ROLL 使用了以下框架或库:
- Ray:用于资源管理和任务调度的分布式框架。
- Megatron-Core:用于大规模模型训练的优化库。
- SGLang:用于语言模型训练的库。
- vLLM:用于LLM训练和推理的库。
4. 项目的代码目录及介绍
项目的代码目录如下:
ROLL/
├── assets/
├── data/
├── docker/
├── docs/
├── examples/
├── mcore_adapter/
├── roll/
│ ├── __init__.py
│ ├── core/
│ ├── data/
│ ├── models/
│ ├── trainers/
│ ├── utils/
│ └── ...
├── tests/
├── .gitignore
├── .pre-commit-config.yaml
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── pyproject.toml
├── requirements_common.txt
├── requirements_torch251_sglang.txt
├── requirements_torch251_vllm.txt
├── requirements_torch260_sglang.txt
└── requirements_torch260_vllm.txt
assets/:存放项目相关的资源文件。data/:包含数据集和相关的数据处理脚本。docker/:包含用于容器化部署的Dockerfile和其他相关文件。docs/:存放项目文档。examples/:提供了一些示例代码和用例。mcore_adapter/:包含了与Megatron-Core的适配器代码。roll/:核心库代码,包括初始化文件、核心模块、数据模块、模型模块、训练模块和工具模块等。tests/:存放单元测试和集成测试代码。- 其他文件:包括项目配置、许可证、Makefile和项目说明等。
5. 对项目进行扩展或者二次开发的方向
- 增强模型性能:可以通过集成更多先进的强化学习算法和优化技术,进一步提升模型在特定任务上的性能。
- 扩展环境支持:根据用户需求,增加对更多类型的环境和奖励机制的支持。
- 优化资源调度:改进资源管理和任务调度策略,以实现更高效的训练流程。
- 增加可定制性:提供更多的配置选项和接口,让用户能够更灵活地定制自己的训练流程。
- 构建集成工具:开发辅助工具,如模型分析、性能监控和数据可视化的工具,以帮助用户更好地理解模型行为和性能。
- 社区支持和文档:加强社区建设和文档编写,提供更丰富的教程和案例,降低用户的入门门槛。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136