ROLL 的项目扩展与二次开发
2025-05-31 03:30:23作者:庞队千Virginia
1. 项目的基础介绍
ROLL(Reinforcement Learning Optimization for Large-Scale Learning)是一个专为大规模学习设计的强化学习库。它针对大型语言模型(LLMs)利用大规模GPU资源,显著提升LLM在人类偏好对齐、复杂推理和多轮代理交互场景中的性能。ROLL 利用 Ray 的多角色分布式架构,实现灵活的资源分配和异构任务调度,集成了 Megatron-Core、SGLang 和 vLLM 等前沿技术,以加速模型训练和推理。
2. 项目的核心功能
- 高效的资源利用:ROLL 充分利用高性能硬件,加速强化学习训练,显著降低大规模GPU集群的训练成本和时间。
- 可扩展性和容错性:支持广泛的LLM训练和优化技术,实现跨数千GPU训练200B+参数的模型,并具有高效的检查点恢复机制以减少停机时间。
- 灵活的硬件使用:支持在不同类型的硬件上执行强化学习训练,用户可以选择同地或解耦部署,配置同步或异步执行模式,以充分利用不同的硬件架构。
- 多样的奖励和环境:实现了一套奖励和环境的工人(Reward Worker 和 Environment Worker),易于根据现有实现定制自己的奖励和环境。
- 优化的样本奖励路由:提供用户友好的接口,控制任务间样本抽样比例,动态路由样本到适当的奖励工人。
- 丰富的训练配方:提供多种强化学习算法、LLM、任务和数据集,减少新训练特性所需的工程努力。
3. 项目使用了哪些框架或库?
ROLL 使用了以下框架或库:
- Ray:用于资源管理和任务调度的分布式框架。
- Megatron-Core:用于大规模模型训练的优化库。
- SGLang:用于语言模型训练的库。
- vLLM:用于LLM训练和推理的库。
4. 项目的代码目录及介绍
项目的代码目录如下:
ROLL/
├── assets/
├── data/
├── docker/
├── docs/
├── examples/
├── mcore_adapter/
├── roll/
│ ├── __init__.py
│ ├── core/
│ ├── data/
│ ├── models/
│ ├── trainers/
│ ├── utils/
│ └── ...
├── tests/
├── .gitignore
├── .pre-commit-config.yaml
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── pyproject.toml
├── requirements_common.txt
├── requirements_torch251_sglang.txt
├── requirements_torch251_vllm.txt
├── requirements_torch260_sglang.txt
└── requirements_torch260_vllm.txt
assets/
:存放项目相关的资源文件。data/
:包含数据集和相关的数据处理脚本。docker/
:包含用于容器化部署的Dockerfile和其他相关文件。docs/
:存放项目文档。examples/
:提供了一些示例代码和用例。mcore_adapter/
:包含了与Megatron-Core的适配器代码。roll/
:核心库代码,包括初始化文件、核心模块、数据模块、模型模块、训练模块和工具模块等。tests/
:存放单元测试和集成测试代码。- 其他文件:包括项目配置、许可证、Makefile和项目说明等。
5. 对项目进行扩展或者二次开发的方向
- 增强模型性能:可以通过集成更多先进的强化学习算法和优化技术,进一步提升模型在特定任务上的性能。
- 扩展环境支持:根据用户需求,增加对更多类型的环境和奖励机制的支持。
- 优化资源调度:改进资源管理和任务调度策略,以实现更高效的训练流程。
- 增加可定制性:提供更多的配置选项和接口,让用户能够更灵活地定制自己的训练流程。
- 构建集成工具:开发辅助工具,如模型分析、性能监控和数据可视化的工具,以帮助用户更好地理解模型行为和性能。
- 社区支持和文档:加强社区建设和文档编写,提供更丰富的教程和案例,降低用户的入门门槛。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~051CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3