ROLL 的项目扩展与二次开发
2025-05-31 12:16:26作者:庞队千Virginia
1. 项目的基础介绍
ROLL(Reinforcement Learning Optimization for Large-Scale Learning)是一个专为大规模学习设计的强化学习库。它针对大型语言模型(LLMs)利用大规模GPU资源,显著提升LLM在人类偏好对齐、复杂推理和多轮代理交互场景中的性能。ROLL 利用 Ray 的多角色分布式架构,实现灵活的资源分配和异构任务调度,集成了 Megatron-Core、SGLang 和 vLLM 等前沿技术,以加速模型训练和推理。
2. 项目的核心功能
- 高效的资源利用:ROLL 充分利用高性能硬件,加速强化学习训练,显著降低大规模GPU集群的训练成本和时间。
- 可扩展性和容错性:支持广泛的LLM训练和优化技术,实现跨数千GPU训练200B+参数的模型,并具有高效的检查点恢复机制以减少停机时间。
- 灵活的硬件使用:支持在不同类型的硬件上执行强化学习训练,用户可以选择同地或解耦部署,配置同步或异步执行模式,以充分利用不同的硬件架构。
- 多样的奖励和环境:实现了一套奖励和环境的工人(Reward Worker 和 Environment Worker),易于根据现有实现定制自己的奖励和环境。
- 优化的样本奖励路由:提供用户友好的接口,控制任务间样本抽样比例,动态路由样本到适当的奖励工人。
- 丰富的训练配方:提供多种强化学习算法、LLM、任务和数据集,减少新训练特性所需的工程努力。
3. 项目使用了哪些框架或库?
ROLL 使用了以下框架或库:
- Ray:用于资源管理和任务调度的分布式框架。
- Megatron-Core:用于大规模模型训练的优化库。
- SGLang:用于语言模型训练的库。
- vLLM:用于LLM训练和推理的库。
4. 项目的代码目录及介绍
项目的代码目录如下:
ROLL/
├── assets/
├── data/
├── docker/
├── docs/
├── examples/
├── mcore_adapter/
├── roll/
│ ├── __init__.py
│ ├── core/
│ ├── data/
│ ├── models/
│ ├── trainers/
│ ├── utils/
│ └── ...
├── tests/
├── .gitignore
├── .pre-commit-config.yaml
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── pyproject.toml
├── requirements_common.txt
├── requirements_torch251_sglang.txt
├── requirements_torch251_vllm.txt
├── requirements_torch260_sglang.txt
└── requirements_torch260_vllm.txt
assets/:存放项目相关的资源文件。data/:包含数据集和相关的数据处理脚本。docker/:包含用于容器化部署的Dockerfile和其他相关文件。docs/:存放项目文档。examples/:提供了一些示例代码和用例。mcore_adapter/:包含了与Megatron-Core的适配器代码。roll/:核心库代码,包括初始化文件、核心模块、数据模块、模型模块、训练模块和工具模块等。tests/:存放单元测试和集成测试代码。- 其他文件:包括项目配置、许可证、Makefile和项目说明等。
5. 对项目进行扩展或者二次开发的方向
- 增强模型性能:可以通过集成更多先进的强化学习算法和优化技术,进一步提升模型在特定任务上的性能。
- 扩展环境支持:根据用户需求,增加对更多类型的环境和奖励机制的支持。
- 优化资源调度:改进资源管理和任务调度策略,以实现更高效的训练流程。
- 增加可定制性:提供更多的配置选项和接口,让用户能够更灵活地定制自己的训练流程。
- 构建集成工具:开发辅助工具,如模型分析、性能监控和数据可视化的工具,以帮助用户更好地理解模型行为和性能。
- 社区支持和文档:加强社区建设和文档编写,提供更丰富的教程和案例,降低用户的入门门槛。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258