pgBackRest在GCS存储中实现批量删除优化备份过期性能
pgBackRest作为PostgreSQL生态中高性能的备份恢复工具,近期在其2.52版本中针对Google Cloud Storage(GCS)存储后端实现了一项重要优化——批量删除操作。这项改进显著提升了备份过期(expire)阶段的执行效率,解决了用户在实际生产环境中遇到的性能瓶颈问题。
背景与问题发现
在实际生产环境中,部分用户发现当使用GCS作为备份存储时,备份操作本身能够快速完成(例如15分钟内),但随后的过期文件清理过程却异常缓慢(长达7小时以上)。这种现象在启用repo-bundle功能后虽有所改善(降至2.5小时),但依然存在明显的性能问题。
经过技术分析发现,根本原因在于旧版本中pgBackRest对GCS存储采用单文件逐个删除的方式。这种实现方式会产生大量独立的HTTP请求,导致显著的网络延迟和操作开销。
技术实现方案
pgBackRest开发团队深入研究了GCS的批量操作API特性,特别是其支持的批处理请求功能。GCS批量API允许将多个操作(如删除)合并到单个HTTP请求中,通过multipart请求体一次提交多个操作指令。
在2.52版本中,开发团队重构了过期处理逻辑,主要改进包括:
- 实现GCS批量删除接口集成
- 优化文件删除队列处理机制
- 自动检测GCS存储类型并启用批量模式
- 保持与现有配置的兼容性
值得注意的是,这项优化是自动生效的,用户无需进行任何额外配置即可享受性能提升。
性能对比与最佳实践
根据用户反馈和技术测试,批量删除实现后带来了显著的性能提升:
- 原先需要7小时以上的过期操作缩短至合理时间范围
- 系统资源利用率显著提高
- 减少了因过期操作延迟导致的备份计划冲突
对于追求极致性能的用户,建议结合以下配置使用:
- 启用repo-bundle功能,将小文件打包存储
- 合理设置保留策略,避免单次过期过多文件
- 监控网络带宽,确保足够的吞吐量
未来发展方向
pgBackRest团队已经将Azure存储的批量删除支持列入开发计划。当前GCS的优化方案也为其他云存储服务的性能优化提供了技术参考。随着云原生技术的普及,pgBackRest将继续深化与各云平台的集成优化,为用户提供更高效的备份恢复体验。
对于正在使用GCS作为存储后端的用户,升级到2.52或更高版本将直接获得这项性能改进。团队也欢迎用户反馈实际使用效果,以持续优化产品性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00