pgBackRest在GCS存储中实现批量删除优化备份过期性能
pgBackRest作为PostgreSQL生态中高性能的备份恢复工具,近期在其2.52版本中针对Google Cloud Storage(GCS)存储后端实现了一项重要优化——批量删除操作。这项改进显著提升了备份过期(expire)阶段的执行效率,解决了用户在实际生产环境中遇到的性能瓶颈问题。
背景与问题发现
在实际生产环境中,部分用户发现当使用GCS作为备份存储时,备份操作本身能够快速完成(例如15分钟内),但随后的过期文件清理过程却异常缓慢(长达7小时以上)。这种现象在启用repo-bundle功能后虽有所改善(降至2.5小时),但依然存在明显的性能问题。
经过技术分析发现,根本原因在于旧版本中pgBackRest对GCS存储采用单文件逐个删除的方式。这种实现方式会产生大量独立的HTTP请求,导致显著的网络延迟和操作开销。
技术实现方案
pgBackRest开发团队深入研究了GCS的批量操作API特性,特别是其支持的批处理请求功能。GCS批量API允许将多个操作(如删除)合并到单个HTTP请求中,通过multipart请求体一次提交多个操作指令。
在2.52版本中,开发团队重构了过期处理逻辑,主要改进包括:
- 实现GCS批量删除接口集成
- 优化文件删除队列处理机制
- 自动检测GCS存储类型并启用批量模式
- 保持与现有配置的兼容性
值得注意的是,这项优化是自动生效的,用户无需进行任何额外配置即可享受性能提升。
性能对比与最佳实践
根据用户反馈和技术测试,批量删除实现后带来了显著的性能提升:
- 原先需要7小时以上的过期操作缩短至合理时间范围
- 系统资源利用率显著提高
- 减少了因过期操作延迟导致的备份计划冲突
对于追求极致性能的用户,建议结合以下配置使用:
- 启用repo-bundle功能,将小文件打包存储
- 合理设置保留策略,避免单次过期过多文件
- 监控网络带宽,确保足够的吞吐量
未来发展方向
pgBackRest团队已经将Azure存储的批量删除支持列入开发计划。当前GCS的优化方案也为其他云存储服务的性能优化提供了技术参考。随着云原生技术的普及,pgBackRest将继续深化与各云平台的集成优化,为用户提供更高效的备份恢复体验。
对于正在使用GCS作为存储后端的用户,升级到2.52或更高版本将直接获得这项性能改进。团队也欢迎用户反馈实际使用效果,以持续优化产品性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00