WCDB Android版分组求和查询实践指南
概述
在Android开发中使用WCDB数据库时,经常会遇到需要进行分组统计查询的场景。本文将详细介绍如何使用WCDB的Java/Kotlin API实现类似SQL中的分组求和功能,特别是针对"select *, sum(money) from table A where time >100 and time < 200 group by kind order by time desc"这样的复杂查询。
WCDB查询构建基础
WCDB提供了类型安全的查询构建方式,通过StatementSelect类可以构建各种SELECT查询。与直接编写SQL语句不同,WCDB的API设计更加面向对象,能够利用编译时检查来避免运行时错误。
实现分组求和查询
要实现分组求和查询,关键在于正确使用StatementSelect的select方法。WCDB提供了两种主要方式来构建查询字段:
- 选择所有字段:使用
Column.all()方法 - 聚合函数:如
sum()、count()等
对于示例中的查询,可以这样构建:
new StatementSelect()
.select(Column.all(), A_Table.money.sum())
.from(A_Table.TABLE_NAME)
.where(A_Table.time.between(100, 200))
.groupBy(A_Table.kind)
.orderBy(A_Table.time.order(Order.DESC));
关键点解析
-
多字段选择:
select()方法可以接受多个参数,因此可以同时选择所有字段和聚合结果。 -
聚合函数使用:通过
字段名.sum()的方式调用聚合函数,其他可用函数还包括avg()、max()、min()等。 -
条件过滤:
where()方法支持各种条件表达式,示例中使用了between()来表示范围查询。 -
分组与排序:
groupBy()和orderBy()方法的使用与SQL语法类似,保持了直观性。
实际应用建议
-
类型安全:WCDB的查询构建是类型安全的,字段名都来自表类,避免了拼写错误。
-
性能考虑:对于大数据量的分组查询,建议添加适当的索引以提高查询效率。
-
结果处理:查询返回的结果集中会包含原始字段和聚合结果,需要正确处理结果集的列映射。
-
复杂查询:对于更复杂的查询,WCDB还支持子查询、多表连接等高级功能。
总结
WCDB提供了强大而类型安全的查询构建API,使得在Android应用中执行复杂的分组统计查询变得简单可靠。通过合理使用StatementSelect的各种方法,开发者可以构建出几乎任何需要的SQL查询,同时享受编译时检查带来的安全性优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01