mitmproxy中实现LLM快捷分析标记流量的技术方案
2025-05-02 08:30:59作者:尤峻淳Whitney
mitmproxy作为一款强大的网络调试工具,其插件系统为功能扩展提供了无限可能。本文将探讨如何通过开发自定义插件,为mitmproxy添加基于大语言模型(LLM)的流量分析功能。
核心需求分析
在实际安全测试和API分析场景中,安全工程师经常需要快速检查大量网络流量中是否包含关键信息(如API密钥、认证令牌等)。传统的人工检查方式效率低下,而LLM的语义理解能力可以显著提升这类任务的效率。
技术实现方案
1. 插件架构设计
基于mitmproxy的addon系统,我们可以构建一个LLM分析插件,主要包含以下组件:
- 快捷键监听模块:注册自定义快捷键(如L键)
- 交互式提示输入:捕获用户的分析需求
- 流量数据处理:提取标记流量的关键信息
- LLM接口调用:与本地或云端LLM服务交互
- 结果展示:在mitmproxy界面中呈现分析结果
2. 关键技术点
流量数据预处理 需要将HTTP流量转换为适合LLM处理的文本格式,包括:
- 请求/响应头
- URL路径和参数
- 请求体内容(JSON/XML等结构化数据)
- 响应状态码和内容摘要
上下文管理 为LLM提供足够的上下文信息,同时避免超出token限制。可采用以下策略:
- 自动截断过长的响应体
- 保留关键头部字段
- 对二进制内容进行Base64编码
实现示例
from mitmproxy import ctx, http
class LLMAnalyzer:
def __init__(self):
self.marked_flows = []
def load(self, loader):
loader.add_option(
name="llm_api_key",
typespec=str,
default="",
help="API key for LLM service"
)
def mark(self, flow: http.HTTPFlow):
self.marked_flows.append(flow)
def analyze_with_llm(self, prompt: str):
# 实现LLM调用逻辑
processed_data = self._prepare_flows_data()
response = llm_client.query(
prompt=prompt,
context=processed_data
)
ctx.log.info(f"LLM分析结果: {response}")
def _prepare_flows_data(self):
# 流量数据预处理
return [
{
"url": flow.request.url,
"method": flow.request.method,
"headers": dict(flow.request.headers),
"content": flow.request.get_text(strict=False)
}
for flow in self.marked_flows
]
应用场景扩展
除了检测关键信息外,该功能还可用于:
- 自动识别API端点模式
- 检测潜在的问题模式(如SQL注入点)
- 生成API文档草稿
- 分析前后端数据交互逻辑
安全注意事项
在实际部署时需特别注意:
- 避免将关键流量发送到不可信的LLM服务
- 对输出结果进行二次验证
- 考虑使用本地化LLM解决方案
- 实现流量数据脱敏机制
总结
通过mitmproxy插件系统集成LLM能力,可以显著提升网络流量分析的效率和深度。这种技术组合为安全研究人员和开发人员提供了强大的分析工具,同时也展示了mitmproxy作为可扩展平台的强大能力。开发者可以根据实际需求,进一步定制和扩展该方案的功能边界。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210