深入解析Python内置排序方法:list.sort()与sorted()的区别与应用
2025-06-10 02:16:18作者:廉皓灿Ida
前言
排序是编程中最基础也是最重要的操作之一。Python提供了两种内置的排序方法:list.sort()
和sorted()
。本文将深入探讨这两种方法的区别、适用场景以及高级用法,帮助读者全面掌握Python中的排序技巧。
两种排序方法的基本区别
Python提供了两种排序方式,它们有着本质的区别:
-
list.sort()
方法- 仅适用于列表(List)对象
- 原地(in-place)排序,会直接修改原列表
- 无返回值(返回None)
-
sorted()
函数- 适用于任何可迭代对象(列表、元组、字典、集合等)
- 非原地排序,返回一个新的排序后的列表
- 不修改原始对象
# list.sort()示例
lst = [3, 1, 4, 2]
lst.sort()
print(lst) # 输出:[1, 2, 3, 4]
# sorted()示例
tup = (3, 1, 4, 2)
new_list = sorted(tup)
print(new_list) # 输出:[1, 2, 3, 4]
print(tup) # 输出:(3, 1, 4, 2) 原元组不变
关键参数:key的使用
key
参数是排序功能中最强大的部分,它允许我们自定义排序的依据。key
接受一个函数,该函数会被应用到每个元素上,然后根据函数的返回结果进行排序。
基本用法
# 按绝对值排序
nums = [-5, 3, -2, 4, -1]
print(sorted(nums, key=abs)) # 输出:[-1, -2, 3, 4, -5]
复杂对象的排序
当处理包含复杂元素的可迭代对象时,key
参数特别有用:
# 按元组第二个元素排序
data = [('apple', 3), ('banana', 1), ('orange', 2)]
print(sorted(data, key=lambda x: x[1]))
# 输出:[('banana', 1), ('orange', 2), ('apple', 3)]
使用operator模块简化代码
Python的operator
模块提供了更简洁的方式来指定排序键:
from operator import itemgetter, attrgetter
# 使用itemgetter按元组索引排序
print(sorted(data, key=itemgetter(1)))
# 自定义类对象排序
class Product:
def __init__(self, name, price):
self.name = name
self.price = price
products = [Product('A', 50), Product('B', 30), Product('C', 40)]
print(sorted(products, key=attrgetter('price')))
高级排序技巧
多级排序
通过key
函数返回元组可以实现多级排序:
# 先按价格排序,价格相同再按名称排序
products = [('apple', 3), ('banana', 2), ('orange', 3)]
print(sorted(products, key=lambda x: (x[1], x[0])))
# 输出:[('banana', 2), ('apple', 3), ('orange', 3)]
降序排序
使用reverse=True
参数可以实现降序排序:
nums = [3, 1, 4, 2]
print(sorted(nums, reverse=True)) # 输出:[4, 3, 2, 1]
自定义比较函数(Python3替代方案)
在Python3中,cmp
参数已被移除,但可以通过functools.cmp_to_key
实现类似功能:
from functools import cmp_to_key
def compare(x, y):
return y[1] - x[1] # 按第二元素降序
data = [('a', 3), ('b', 1), ('c', 2)]
print(sorted(data, key=cmp_to_key(compare)))
# 输出:[('a', 3), ('c', 2), ('b', 1)]
性能考虑
- 时间复杂度:Python的排序算法是Timsort,平均和最坏情况下都是O(n log n)
- 空间复杂度:
list.sort()
是原地排序,空间复杂度为O(1)sorted()
需要额外空间存储新列表,空间复杂度为O(n)
- 选择建议:
- 如果需要保留原列表,使用
sorted()
- 如果列表很大且不需要保留原顺序,使用
list.sort()
更节省内存
- 如果需要保留原列表,使用
常见误区与注意事项
-
生成器消耗:对生成器使用
sorted()
会消耗生成器gen = (x for x in range(5)) sorted_gen = sorted(gen) # 生成器被消耗
-
原地修改:
list.sort()
会修改原列表,可能导致意外行为lst = [3, 1, 2] lst.sort() # 此时lst已被修改
-
稳定性:Python的排序是稳定的,相等元素的相对顺序会保持不变
实际应用示例
案例1:学生成绩排序
students = [
{'name': 'Alice', 'score': 85},
{'name': 'Bob', 'score': 92},
{'name': 'Charlie', 'score': 78}
]
# 按成绩降序排序
sorted_students = sorted(students, key=lambda x: x['score'], reverse=True)
案例2:文件名排序(自然排序)
import re
files = ['file1.txt', 'file10.txt', 'file2.txt']
def natural_key(text):
return [int(c) if c.isdigit() else c for c in re.split('([0-9]+)', text)]
print(sorted(files, key=natural_key))
# 输出:['file1.txt', 'file2.txt', 'file10.txt']
总结
Python的排序功能既强大又灵活。理解list.sort()
和sorted()
的区别,掌握key
参数的使用方法,能够帮助我们在实际开发中高效地处理各种排序需求。记住:
- 需要修改原列表时使用
list.sort()
- 需要保留原对象或排序非列表对象时使用
sorted()
- 复杂排序逻辑优先考虑
key
参数而非自定义比较函数 - 多级排序可以通过返回元组作为键来实现
通过合理运用这些排序技巧,可以大大提升Python代码的简洁性和效率。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0