深入解析Python内置排序方法:list.sort()与sorted()的区别与应用
2025-06-10 07:05:35作者:廉皓灿Ida
前言
排序是编程中最基础也是最重要的操作之一。Python提供了两种内置的排序方法:list.sort()和sorted()。本文将深入探讨这两种方法的区别、适用场景以及高级用法,帮助读者全面掌握Python中的排序技巧。
两种排序方法的基本区别
Python提供了两种排序方式,它们有着本质的区别:
-
list.sort()方法- 仅适用于列表(List)对象
- 原地(in-place)排序,会直接修改原列表
- 无返回值(返回None)
-
sorted()函数- 适用于任何可迭代对象(列表、元组、字典、集合等)
- 非原地排序,返回一个新的排序后的列表
- 不修改原始对象
# list.sort()示例
lst = [3, 1, 4, 2]
lst.sort()
print(lst) # 输出:[1, 2, 3, 4]
# sorted()示例
tup = (3, 1, 4, 2)
new_list = sorted(tup)
print(new_list) # 输出:[1, 2, 3, 4]
print(tup) # 输出:(3, 1, 4, 2) 原元组不变
关键参数:key的使用
key参数是排序功能中最强大的部分,它允许我们自定义排序的依据。key接受一个函数,该函数会被应用到每个元素上,然后根据函数的返回结果进行排序。
基本用法
# 按绝对值排序
nums = [-5, 3, -2, 4, -1]
print(sorted(nums, key=abs)) # 输出:[-1, -2, 3, 4, -5]
复杂对象的排序
当处理包含复杂元素的可迭代对象时,key参数特别有用:
# 按元组第二个元素排序
data = [('apple', 3), ('banana', 1), ('orange', 2)]
print(sorted(data, key=lambda x: x[1]))
# 输出:[('banana', 1), ('orange', 2), ('apple', 3)]
使用operator模块简化代码
Python的operator模块提供了更简洁的方式来指定排序键:
from operator import itemgetter, attrgetter
# 使用itemgetter按元组索引排序
print(sorted(data, key=itemgetter(1)))
# 自定义类对象排序
class Product:
def __init__(self, name, price):
self.name = name
self.price = price
products = [Product('A', 50), Product('B', 30), Product('C', 40)]
print(sorted(products, key=attrgetter('price')))
高级排序技巧
多级排序
通过key函数返回元组可以实现多级排序:
# 先按价格排序,价格相同再按名称排序
products = [('apple', 3), ('banana', 2), ('orange', 3)]
print(sorted(products, key=lambda x: (x[1], x[0])))
# 输出:[('banana', 2), ('apple', 3), ('orange', 3)]
降序排序
使用reverse=True参数可以实现降序排序:
nums = [3, 1, 4, 2]
print(sorted(nums, reverse=True)) # 输出:[4, 3, 2, 1]
自定义比较函数(Python3替代方案)
在Python3中,cmp参数已被移除,但可以通过functools.cmp_to_key实现类似功能:
from functools import cmp_to_key
def compare(x, y):
return y[1] - x[1] # 按第二元素降序
data = [('a', 3), ('b', 1), ('c', 2)]
print(sorted(data, key=cmp_to_key(compare)))
# 输出:[('a', 3), ('c', 2), ('b', 1)]
性能考虑
- 时间复杂度:Python的排序算法是Timsort,平均和最坏情况下都是O(n log n)
- 空间复杂度:
list.sort()是原地排序,空间复杂度为O(1)sorted()需要额外空间存储新列表,空间复杂度为O(n)
- 选择建议:
- 如果需要保留原列表,使用
sorted() - 如果列表很大且不需要保留原顺序,使用
list.sort()更节省内存
- 如果需要保留原列表,使用
常见误区与注意事项
-
生成器消耗:对生成器使用
sorted()会消耗生成器gen = (x for x in range(5)) sorted_gen = sorted(gen) # 生成器被消耗 -
原地修改:
list.sort()会修改原列表,可能导致意外行为lst = [3, 1, 2] lst.sort() # 此时lst已被修改 -
稳定性:Python的排序是稳定的,相等元素的相对顺序会保持不变
实际应用示例
案例1:学生成绩排序
students = [
{'name': 'Alice', 'score': 85},
{'name': 'Bob', 'score': 92},
{'name': 'Charlie', 'score': 78}
]
# 按成绩降序排序
sorted_students = sorted(students, key=lambda x: x['score'], reverse=True)
案例2:文件名排序(自然排序)
import re
files = ['file1.txt', 'file10.txt', 'file2.txt']
def natural_key(text):
return [int(c) if c.isdigit() else c for c in re.split('([0-9]+)', text)]
print(sorted(files, key=natural_key))
# 输出:['file1.txt', 'file2.txt', 'file10.txt']
总结
Python的排序功能既强大又灵活。理解list.sort()和sorted()的区别,掌握key参数的使用方法,能够帮助我们在实际开发中高效地处理各种排序需求。记住:
- 需要修改原列表时使用
list.sort() - 需要保留原对象或排序非列表对象时使用
sorted() - 复杂排序逻辑优先考虑
key参数而非自定义比较函数 - 多级排序可以通过返回元组作为键来实现
通过合理运用这些排序技巧,可以大大提升Python代码的简洁性和效率。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
283
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
225
303
暂无简介
Dart
572
127
Ascend Extension for PyTorch
Python
109
139
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
171
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
仓颉编译器源码及 cjdb 调试工具。
C++
120
194
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205