SQLGlot项目中的正则表达式提取功能解析
SQLGlot是一个强大的SQL解析和转换工具,它支持多种SQL方言之间的转换。在最新版本中,SQLGlot增强了对DuckDB数据库正则表达式提取功能的支持,特别是regexp_extract函数的非整数位置参数处理能力。
正则表达式提取功能概述
正则表达式在数据处理中扮演着重要角色,特别是在字符串解析和提取场景下。SQLGlot通过RegexpExtract表达式类实现了跨数据库的正则表达式提取功能。
DuckDB的特殊实现
DuckDB数据库的regexp_extract函数有一个独特的功能:当第三个参数是一个数组时,它会返回一个结构体结果,其中键名对应数组中的元素,键值对应正则表达式捕获组的内容。例如:
regexp_extract('2023-04-15', '(\d+)-(\d+)-(\d+)', ['y', 'm', 'd'])
这个调用会返回结构体{'y':'2023', 'm':'04', 'd':'15'},非常适用于需要命名捕获组的场景。
SQLGlot的实现细节
在SQLGlot中,RegexpExtract表达式类最初只支持整数类型的position参数,这限制了DuckDB特有功能的完整支持。通过最近的更新,SQLGlot现在能够正确处理数组类型的参数,完整支持DuckDB的这一特性。
使用示例
在Python代码中使用SQLGlot构建这类查询时,需要显式指定DuckDB方言以确保正确的SQL生成:
import sqlglot as sg
import sqlglot.expressions as sge
expr = sg.func(
"regexp_extract",
sge.convert("2023-04-15"),
sge.convert(r"(\d+)-(\d+)-(\d+)"),
sge.convert(["y", "m", "d"]),
dialect="duckdb"
)
生成的SQL语句将正确包含数组参数,完全符合DuckDB的语法要求。
技术意义
这一改进使得SQLGlot能够更完整地支持DuckDB特有的SQL功能,为数据工程师和数据分析师提供了更强大的工具来处理复杂的数据提取和转换任务。特别是在处理日期字符串、日志数据等需要结构化提取的场景下,这一功能显得尤为实用。
总结
SQLGlot通过不断完善对各种SQL方言特殊功能的支持,巩固了其作为SQL转换工具的领导地位。对DuckDB正则表达式提取功能的完整支持,再次证明了该项目对开发者需求的快速响应能力和技术的前瞻性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00