Betterscan CE 开源项目安装及使用指南
一、项目介绍
Betterscan CE(社区版)是一款全面的代码扫描工具,其基于QuantifedCode构建而成。它不仅能够检查多种编程语言(如PHP、Java、Python等),还能对基础设施作为代码(Infrastructure as a Code,简称IAC)进行安全和最佳实践评估,支持包括Docker、Kubernetes在内的众多平台。此外,Betterscan CE还具备强大的秘密扫描功能,可识别超过166种不同类型的秘密。
Betterscan CE具有以下特点:
- 集成多种静态分析工具于一身,提供超过6300种不同的检查项。
- 支持云原生环境及基础设施扫描,覆盖主要云服务提供商的配置审计。
- 能够扩展以接纳任何产生JSON输出的自定义工具。
- 可选择将状态存储在各种数据库或Git仓库中。
- 提供CLI、HTML、标准分析结果格式以及JSON等多种形式的报告输出。
该项目遵循BSD-3-Clause许可证发布,但经过修改的部分则采用AGPL-3.0许可。
二、项目快速启动
为了帮助您迅速上手并体验Betterscan CE的强大功能,下面将指导如何通过命令行方式进行快速部署。确保您的开发环境中已安装Git和Docker。
安装步骤
在您的代码目录中运行以下命令:
sh <(curl https://raw.githubusercontent.com/tcosolutions/betterscan-ce/main/cli.sh)
该命令将自动下载并执行Betterscan CE的最新版本。如果您倾向于获取HTML格式的详细报告,则应使用下面的命令:
sh <(curl https://raw.githubusercontent.com/tcosolutions/beterscan-ce/main/cli-html.sh)
使用示例
假设您的工作区位于~/myproject,您可以直接在这个目录下运行上述任一命令,Betterscan CE将会对所有文件进行深度扫描,查找潜在的安全漏洞、代码缺陷、不良习惯及泄露的秘密数据。
cd ~/myproject
sh <(curl https://raw.githubusercontent.com/tcosolutions/betterscan-ce/main/cli.sh)
三、应用案例和最佳实践
Betterscan CE适用于以下场景:
- 代码质量提升:利用静态分析找出潜在的bug、不良编码习惯;
- 安全性审查:检测可能存在的安全隐患,如SQL注入、XSS攻击、不当认证机制等;
- 合规性审核:确保应用程序遵守行业标准和法规要求;
- 基础设施审计:评估云环境中的资源是否按最佳实践配置,减少未授权访问风险;
- 机密管理:预防敏感信息如API密钥、数据库凭证等被意外公开。
对于每个应用场景,Betterscan CE提供了详细的报告和建议,帮助企业团队提高工作效率的同时,也降低了因疏忽导致的数据泄漏或其他安全事件的发生概率。
四、典型生态项目
虽然Betterscan CE本身已经涵盖了广泛的检查需求,但它同样鼓励用户贡献新的规则集或者改进现有算法。以下是几个在GitHub上得到广泛认可且与Betterscan CE紧密集成的项目实例:
- Semgrep:一款流行的语法级错误检测器,在Betterscan CE的支持列表中占有重要位置。
- tfsec:专注于Terraform模板的扫描工具,帮助开发者避免在IaC文件中引入安全漏洞。
- YARA:用于恶意软件搜索的灵活模式匹配引擎,增强Betterscan CE的威胁检测能力。
这些生态项目共同构成了一个多元化的、持续演进的安全防护体系,而Betterscan CE正是这一生态的核心。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00