PyBacktesting 开源项目教程
2024-08-17 23:24:40作者:曹令琨Iris
1. 项目介绍
PyBacktesting 是一个Python库,专门用于股票交易策略的回测。这个工具允许开发者和交易者通过历史数据测试他们的交易理念,从而评估策略的有效性,而无需实际投入资金。它提供了一套直观的API,使得构建和分析策略成为一件相对简单的事情,适合于从新手到高级交易算法开发者的广泛人群。
2. 项目快速启动
首先,确保你的环境中已经安装了Python。接下来,通过pip安装PyBacktesting库:
pip install pybacktesting
接下来,我们可以快速创建一个简单的回测示例。以下代码演示了一个基于简单移动平均线(SMA)策略的回测例子:
from pybacktesting import Backtest, Strategy
class SMAStrategy(Strategy):
def init(self):
self.sma_short = self.I(lambda data: data['Close'].rolling(window=50).mean(), plot=True)
self.sma_long = self.I(lambda data: data['Close'].rolling(window=200).mean(), plot=True)
def next(self):
if not self.position:
if self.sma_short[-1] > self.sma_long[-1]:
self.buy()
else:
if self.sma_short[-1] < self.sma_long[-1]:
self.sell()
data = Backtest('AAPL', SMAStrategy, cash=100000, commission=.001)
results = data.run()
results.plot()
这段代码中,我们定义了一个基于两条不同周期SMA交叉的买卖策略,对苹果公司(AAPL)的历史数据进行回测。最后通过调用plot()方法来可视化回测结果。
3. 应用案例和最佳实践
示例:优化参数
PyBacktesting支持参数优化,帮助找到最优的策略配置。例如,调整SMA窗口大小进行网格搜索:
from itertools import product
params = [(x, y) for x, y in product(range(10, 100, 10), repeat=2)]
best_performance = None
best_params = None
for param in params:
sma_short, sma_long = param
strat = SMAStrategy(params={'sma_short': sma_short, 'sma_long': sma_long})
bt = Backtest('AAPL', strat, cash=100000, commission=.001)
perf = bt.run().performance
if best_performance is None or perf['Total'] > best_performance['Total']:
best_performance = perf
best_params = param
print(f'Best Parameters: {best_params}, Best Performance: {best_performance}')
最佳实践
- 详细记录:在实施策略时,详细记录每一步决策的理由。
- 避免过拟合:确保测试的参数在未知数据集上同样有效。
- 考虑成本:包括交易费用和滑点在内,以提高模型的真实世界代表性。
4. 典型生态项目
虽然PyBacktesting本身是一个独立的库,但它可以融入更广泛的金融数据分析和量化交易生态系统,比如与pandas, yfinance等库结合使用,获取更多数据或增强数据分析能力。此外,对于那些寻求更高级功能或希望整合机器学习的用户,可探索如Zipline, Backtrader等更全面的量化交易平台,这些平台同样具有丰富的社区资源和插件支持。
本教程提供了入门PyBacktesting的基本步骤和概念,旨在帮助用户快速上手并深入探索这一强大的回测工具。通过不断实验和优化,你可以在此基础上构建出复杂且有效的交易策略。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137