4DGaussians项目自定义数据集训练指南
2025-06-30 21:43:05作者:明树来
背景介绍
4DGaussians是一个基于3D高斯分布的动态场景重建项目,它扩展了3D高斯泼溅技术,使其能够处理动态场景。对于希望使用自定义数据集进行训练的研究人员和开发者来说,了解如何准备数据集至关重要。
数据集准备要点
相机位姿计算
与大多数神经渲染和3D重建项目类似,4DGaussians需要精确的相机位姿信息。推荐使用以下方法获取相机参数:
- COLMAP处理:这是最常用的开源多视图几何工具,可以从图像序列中重建场景并计算相机位姿
- NerfStudio兼容格式:虽然不强制使用NerfStudio,但遵循其数据格式可以确保兼容性
- 其他应用支持:如Polycam等移动端扫描应用也能生成可用数据
数据组织建议
虽然没有强制要求使用NerfStudio,但建议按照以下结构组织数据:
custom_dataset/
├── images/ # 存放所有输入图像
├── sparse/ # COLMAP生成的稀疏重建结果
├── dense/ # 可选,稠密重建结果
└── transforms.json # 相机参数文件
技术细节说明
相机参数文件格式
transforms.json文件应包含以下关键信息:
- 相机内参(焦距、主点等)
- 每帧图像的相机外参(旋转和平移矩阵)
- 图像文件路径
- 可选的时间戳信息(对动态场景尤为重要)
动态场景特殊要求
由于4DGaussians专注于动态场景重建,数据集准备时还需注意:
- 时间一致性:确保帧与帧之间有足够的时间关联信息
- 运动幅度:场景变化不宜过大,以保证重建质量
- 时间采样:均匀的时间采样有助于模型学习动态特性
实践建议
对于初次尝试自定义数据集训练的用户,建议:
- 从小规模数据集开始(50-100张图像)
- 确保相机位姿精度,可通过COLMAP的重投影误差评估
- 逐步增加数据复杂度,从静态场景过渡到动态场景
- 注意光照条件的一致性,避免剧烈变化影响重建效果
通过遵循这些指南,用户可以有效地准备自定义数据集,充分利用4DGaussians项目进行动态场景的三维重建和研究工作。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1