Yakit项目中实现Web Fuzzer流量转发的技术方案
背景与需求分析
在网络安全测试和渗透测试过程中,Web Fuzzer是一个非常重要的工具,用于发送大量精心构造的请求来测试目标系统的安全性。然而,在实际使用中,安全研究人员经常遇到以下两个痛点:
-
流量过大问题:当通过下游中间件(如xray等被动扫描工具)转发所有流量时,会产生大量不必要的转发数据包,既浪费资源又影响效率。
-
测试干扰问题:在进行功能测试、添加或删除某些功能时,容易忘记关闭中间件转发,导致测试数据被意外转发,影响系统数据的准确性。
解决方案设计
针对上述问题,Yakit项目提出了两种可行的技术解决方案:
方案一:Web Fuzzer专用Codec插件
这个方案的核心思想是开发一个专门用于Web Fuzzer的Codec插件,实现单个数据包的定向转发功能。该方案具有以下特点:
-
精确控制:只转发用户明确选择的单个数据包,避免全量转发带来的资源浪费。
-
简单实现:Codec插件的开发相对简单,可以快速集成到现有系统中。
-
配置灵活性:虽然初期可能只能写死转发地址,但为后续支持动态配置预留了扩展空间。
方案二:MITM插件集成方案
作为替代方案,可以使用Yakit已有的MITM插件(被动扫描助手)功能:
-
现有功能复用:在Web Fuzzer运行时挂载MITM中间件,利用现有基础设施实现流量转发。
-
无缝集成:不需要额外开发新插件,直接使用系统已有功能。
-
配置便捷:通过现有的MITM中间件配置界面即可完成转发设置。
技术实现细节
Web Fuzzer Codec插件实现要点
-
右键菜单集成:在Web Fuzzer界面中,通过右键菜单添加"流量转发"选项,提供直观的用户操作入口。
-
转发地址配置:
- 初期可采用硬编码方式指定转发地址(如127.0.0.1:7777)
- 后期可扩展为支持用户自定义配置界面
-
数据包处理:
- 捕获用户选择的HTTP请求数据包
- 保持原始请求的完整性和头部信息
- 通过指定中间件端口转发请求
-
响应处理:可选择是否接收并显示中间件返回的响应数据
MITM插件方案的优势
-
无需额外开发:直接利用现有MITM基础设施
-
配置集中管理:通过统一的中间件设置界面管理所有转发规则
-
功能完整性:支持HTTPS解密、请求修改等高级功能
应用场景建议
-
精确测试场景:当只需要测试特定请求时,使用Codec插件方案更为合适,避免无关流量的干扰。
-
批量测试场景:当需要进行大规模测试时,使用MITM插件方案效率更高。
-
混合使用模式:在日常测试中,可以同时配置两种方案,根据实际需求灵活切换。
未来发展方向
-
动态配置支持:为Codec插件添加转发地址的动态配置功能
-
规则引擎集成:支持基于规则的条件转发,如只转发特定URL或包含特定参数的请求
-
性能优化:针对大规模转发场景优化处理性能
-
可视化增强:在界面中明确显示当前转发状态和统计信息
通过以上技术方案,Yakit项目能够有效解决Web Fuzzer流量转发中的精确控制和资源优化问题,为安全研究人员提供更高效、更灵活的工具支持。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









