Yakit项目中实现Web Fuzzer流量转发的技术方案
背景与需求分析
在网络安全测试和渗透测试过程中,Web Fuzzer是一个非常重要的工具,用于发送大量精心构造的请求来测试目标系统的安全性。然而,在实际使用中,安全研究人员经常遇到以下两个痛点:
-
流量过大问题:当通过下游中间件(如xray等被动扫描工具)转发所有流量时,会产生大量不必要的转发数据包,既浪费资源又影响效率。
-
测试干扰问题:在进行功能测试、添加或删除某些功能时,容易忘记关闭中间件转发,导致测试数据被意外转发,影响系统数据的准确性。
解决方案设计
针对上述问题,Yakit项目提出了两种可行的技术解决方案:
方案一:Web Fuzzer专用Codec插件
这个方案的核心思想是开发一个专门用于Web Fuzzer的Codec插件,实现单个数据包的定向转发功能。该方案具有以下特点:
-
精确控制:只转发用户明确选择的单个数据包,避免全量转发带来的资源浪费。
-
简单实现:Codec插件的开发相对简单,可以快速集成到现有系统中。
-
配置灵活性:虽然初期可能只能写死转发地址,但为后续支持动态配置预留了扩展空间。
方案二:MITM插件集成方案
作为替代方案,可以使用Yakit已有的MITM插件(被动扫描助手)功能:
-
现有功能复用:在Web Fuzzer运行时挂载MITM中间件,利用现有基础设施实现流量转发。
-
无缝集成:不需要额外开发新插件,直接使用系统已有功能。
-
配置便捷:通过现有的MITM中间件配置界面即可完成转发设置。
技术实现细节
Web Fuzzer Codec插件实现要点
-
右键菜单集成:在Web Fuzzer界面中,通过右键菜单添加"流量转发"选项,提供直观的用户操作入口。
-
转发地址配置:
- 初期可采用硬编码方式指定转发地址(如127.0.0.1:7777)
- 后期可扩展为支持用户自定义配置界面
-
数据包处理:
- 捕获用户选择的HTTP请求数据包
- 保持原始请求的完整性和头部信息
- 通过指定中间件端口转发请求
-
响应处理:可选择是否接收并显示中间件返回的响应数据
MITM插件方案的优势
-
无需额外开发:直接利用现有MITM基础设施
-
配置集中管理:通过统一的中间件设置界面管理所有转发规则
-
功能完整性:支持HTTPS解密、请求修改等高级功能
应用场景建议
-
精确测试场景:当只需要测试特定请求时,使用Codec插件方案更为合适,避免无关流量的干扰。
-
批量测试场景:当需要进行大规模测试时,使用MITM插件方案效率更高。
-
混合使用模式:在日常测试中,可以同时配置两种方案,根据实际需求灵活切换。
未来发展方向
-
动态配置支持:为Codec插件添加转发地址的动态配置功能
-
规则引擎集成:支持基于规则的条件转发,如只转发特定URL或包含特定参数的请求
-
性能优化:针对大规模转发场景优化处理性能
-
可视化增强:在界面中明确显示当前转发状态和统计信息
通过以上技术方案,Yakit项目能够有效解决Web Fuzzer流量转发中的精确控制和资源优化问题,为安全研究人员提供更高效、更灵活的工具支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00