serde-json 浮点数精度问题解析
2025-06-08 22:00:27作者:蔡怀权
在 Rust 生态系统中,serde-json 是一个非常流行的 JSON 序列化和反序列化库。然而,在处理某些特定浮点数时,开发者可能会遇到精度丢失的问题。本文将深入探讨这一现象的技术背景和解决方案。
问题现象
当使用 serde_json 的默认配置反序列化某些边界值时,会出现精度丢失的情况。例如:
- 对于 2^53-1 (9007199254740991) 和 -(2^53-1) 这样的边界整数
- 对于某些特殊的小数如 -8.990567403888024e-203
- 对于特定的大数如 4.05831638439668e266
这些数字在理论上都可以被 f64 类型精确表示,但在默认配置下却会出现精度丢失。
技术背景
IEEE 754 双精度浮点数
f64 类型遵循 IEEE 754 双精度浮点数标准,具有:
- 1 位符号位
- 11 位指数位
- 52 位尾数位
这意味着它能精确表示的整数范围是 -2^53 到 2^53。超过这个范围的整数将无法被精确表示。
serde_json 的解析策略
serde_json 在解析浮点数时提供了两种策略:
- 默认策略:追求性能优先,使用快速但可能损失精度的算法
- 精确策略(通过 float_roundtrip 特性启用):保证精度但性能降低约2倍
解决方案
开发者有几种方式可以解决这个问题:
-
启用 float_roundtrip 特性: 在 Cargo.toml 中配置:
[dependencies] serde_json = { version = "1.0", features = ["float_roundtrip"] }这会使用更精确但稍慢的解析算法。
-
使用任意精度特性: 启用 arbitrary_precision 特性可以完全避免浮点数精度问题,但需要注意工作区依赖问题。
-
类型转换: 对于已知是整数的值,可以先用 i64 类型序列化/反序列化,再转换为 f64。
性能与精度的权衡
serde_json 的默认行为是经过深思熟虑的设计选择。在大多数应用场景中,微小的精度损失是可以接受的,而性能提升则非常明显。只有在特定需要高精度的场景下,才需要考虑启用精确解析特性。
最佳实践建议
- 评估应用场景是否需要高精度浮点解析
- 如果不需要,保持默认配置以获得最佳性能
- 如果需要高精度,考虑启用 float_roundtrip 特性
- 对于已知是整数的值,优先使用整数类型处理
- 在测试中特别注意边界值的处理
通过理解这些技术细节和解决方案,开发者可以更好地在项目中处理 JSON 数据的浮点数精度问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328