SwiftProtobuf 项目在 Swift 5.10 下的并发安全性改进
SwiftProtobuf 项目在升级到 Swift 5.10 后遇到了新的并发安全性警告,这些警告源于 Swift 5.10 引入的 SE-0412 改进对全局变量的严格并发检查要求。本文将深入分析这些问题的本质以及项目团队采取的解决方案。
问题背景
Swift 5.10 引入了 SE-0412 改进,要求所有全局变量必须满足以下条件之一:
- 被隔离到全局执行器(global actor)
- 同时满足不可变和 Sendable 类型
在 SwiftProtobuf 项目中,主要出现了两类并发安全性警告:
存储类的默认实例问题
项目中存在多个存储类(如 AnyMessageStorage 和生成的消息存储类)的静态默认实例,这些实例被标记为全局变量。由于存储类本身不符合 Sendable 协议,触发了并发警告。
_NameMap 的并发安全性问题
每个生成的消息类型都包含一个静态的 _protobuf_nameMap 属性,该属性使用 _NameMap 类型。由于 _NameMap 不符合 Sendable 协议,同样触发了并发警告。
技术分析与解决方案
存储类默认实例的优化
存储类的默认实例是一个重要的性能优化,它避免了在消息未被修改时的不必要内存分配。项目团队考虑了以下解决方案:
- 移除默认实例:最简单但会牺牲性能的方案
- 标记为 @unchecked Sendable:由于存储类只能通过消息结构体访问,而消息结构体已经实现了正确的 CoW(写时复制)行为,这个方案是可行的
最终团队决定采用第二种方案,通过将存储类标记为 @unchecked Sendable 来保持性能优化同时解决并发警告。
_NameMap 的改进
_NameMap 最初设计时使用了字符串驻留和 UnsafePointer 等技术,但深入分析后发现:
- _NameMap 在初始化后是不可变的
- 虽然内部使用了不安全指针,但使用模式是安全的
团队决定短期内将 _NameMap 标记为 @unchecked Sendable,同时计划长期重构以利用现代 Swift 字符串的 UTF-8 支持特性,简化实现。
其他并发相关问题
除了上述主要问题外,项目还发现了其他并发警告:
- DispatchQueue 问题:在 Linux 平台上 Dispatch 模块的并发注解问题
- CharacterSet 使用:在 Linux 平台上的并发警告
- 资源包访问器:SwiftPM 生成的代码中的并发问题
对于这些问题,团队采取了以下措施:
- 使用平台条件编译处理平台差异
- 简化 CharacterSet 的使用方式
- 等待上游对生成代码问题的修复
总结与展望
SwiftProtobuf 项目通过这次升级,不仅解决了 Swift 5.10 的并发警告,还对内部实现进行了现代化改进。这些改动包括:
- 明确了存储类和 _NameMap 的并发安全性保证
- 优化了跨平台代码的实现
- 为未来完全支持 Swift 6 的严格并发检查奠定了基础
随着 Swift 并发模型的不断演进,SwiftProtobuf 项目将继续跟进最佳实践,确保在提供高性能 Protobuf 支持的同时,完全符合 Swift 的并发安全要求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00