Miri项目在Illumos系统上的基础功能支持进展
Miri作为Rust语言的MIR解释器,在跨平台支持方面一直持续改进。最近开发团队重点关注了在Illumos系统(Solaris衍生操作系统)上的基础功能支持问题,特别是内存分配和随机数生成这两个关键模块的实现。
内存对齐分配问题
在x86_64架构的Illumos系统上测试时,发现高对齐内存分配功能存在问题。具体表现为当使用Miri测试alloc模块时,系统缺乏对libc::memalign函数的支持。memalign是POSIX标准中定义的内存对齐分配函数,允许开发者指定特定的内存对齐要求。
这个问题影响了所有需要特定内存对齐的堆分配操作。在底层实现上,Illumos系统确实提供了memalign功能,但Miri的解释器环境尚未正确映射这一系统调用。
随机数生成机制
另一个关键问题是HashMap的随机初始化功能。测试发现系统会回退到基于文件的随机数生成方案,而开发团队期望它能使用原生的随机数API。当前Rust标准库对Solarish系统(包括Illumos)的随机数支持不完整,虽然系统提供了libc::getrandom接口,但标准库尚未实现相应的调用路径。
这个问题特别影响了需要高质量随机数的场景,如HashMap的种子生成。目前标准库中的随机数实现已经支持Linux等系统,只需扩展相同逻辑到Solarish平台即可。
解决方案与实现
针对这两个问题,解决方案相对明确:
-
对于内存对齐分配,需要在Miri中实现Illumos平台的memalign支持,正确映射到底层系统调用。
-
对于随机数生成,需要修改Rust标准库,在现有的Unix平台随机数实现中增加Solarish系统的支持。由于系统已经提供getrandom接口,这个扩展工作应该相对简单。
这些改进将使Miri在Illumos系统上获得更完整的基础功能支持,为后续更复杂的测试和功能开发奠定基础。这也体现了Rust生态系统对多样化Unix系统的持续兼容性努力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00