PyTorch Lightning中优化预训练子模块的检查点存储策略
2025-05-05 18:39:38作者:伍希望
在PyTorch Lightning项目开发中,我们经常会遇到需要整合大型预训练模型(如LLM、VAE等)作为子模块的情况。这些预训练模型在训练过程中参数保持不变,但默认情况下会被完整保存到检查点中,这会导致两个主要问题:
- 存储空间浪费:大型预训练模型的参数会显著增加检查点文件大小
- IO时间增加:每次保存和加载检查点时都需要处理这些不变的参数
问题本质分析
PyTorch Lightning的默认检查点机制会保存整个模型的状态,包括所有子模块。对于预训练且训练过程中不变的子模块,这种全量保存的方式确实不够高效。我们需要一种方法来告诉框架:"这部分子模块不需要保存在检查点中"。
解决方案
PyTorch Lightning提供了两种主要方式来解决这个问题:
1. 自定义state_dict方法
通过重写模型的state_dict方法,我们可以精确控制哪些参数需要被保存。例如:
def state_dict(self, *args, **kwargs):
# 获取默认的state_dict
state_dict = super().state_dict(*args, **kwargs)
# 移除不需要保存的子模块参数
for name in list(state_dict.keys()):
if name.startswith("vae."): # 假设vae是我们的预训练子模块
del state_dict[name]
return state_dict
这种方法提供了最大的灵活性,可以精确控制每个参数的保存行为。
2. 使用strict_loading=False特性
从PyTorch Lightning 2.2版本开始,新增了strict_loading特性。我们可以设置:
self.strict_loading = False
这样在加载检查点时,框架会允许部分参数不匹配,使得我们可以安全地加载移除了预训练子模块参数的检查点。
最佳实践建议
-
明确区分:在模型设计阶段就明确哪些是预训练不变的子模块,哪些是需要训练的参数
-
文档记录:在代码中添加清晰的注释,说明为什么某些子模块不被保存
-
版本兼容:当修改state_dict行为时,考虑检查点的向后兼容性
-
性能测试:比较优化前后的检查点大小和加载时间,量化优化效果
实现示例
以下是一个完整的实现示例:
class MyLightningModule(pl.LightningModule):
def __init__(self):
super().__init__()
self.strict_loading = False # 允许部分加载
self.vae = AutoencoderKL.from_pretrained(...) # 预训练子模块
self.trainable_head = nn.Linear(...) # 需要训练的部分
def state_dict(self, *args, **kwargs):
state_dict = super().state_dict(*args, **kwargs)
# 过滤掉预训练子模块的参数
return {k: v for k, v in state_dict.items() if not k.startswith("vae.")}
def on_load_checkpoint(self, checkpoint):
# 自定义加载逻辑
current_state = self.state_dict()
for key in checkpoint["state_dict"]:
if key in current_state:
current_state[key] = checkpoint["state_dict"][key]
self.load_state_dict(current_state, strict=False)
注意事项
-
当使用非严格加载时,确保训练逻辑不会因为缺少参数而出现问题
-
如果预训练子模块的权重可能会在后续被微调,则不应该将其从检查点中移除
-
在分布式训练场景下,确保所有进程都使用相同的检查点加载策略
通过合理利用PyTorch Lightning提供的这些特性,我们可以显著优化模型检查点的存储和加载效率,特别是在使用大型预训练模型作为子组件的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
455
3.39 K
Ascend Extension for PyTorch
Python
257
291
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
173
63
暂无简介
Dart
706
168
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
834
411
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
React Native鸿蒙化仓库
JavaScript
282
331
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
393
131
openGauss kernel ~ openGauss is an open source relational database management system
C++
164
222