RealSR-NCNN-Android项目1.11.3版本发布:跨平台超分工具全面升级
2025-07-02 18:09:13作者:柏廷章Berta
RealSR-NCNN-Android是一个基于NCNN和MNN深度学习框架的超分辨率(Super-Resolution)图像处理项目,旨在为移动端和桌面端提供高效的图像增强解决方案。该项目通过深度学习模型将低分辨率图像转换为高分辨率图像,同时保持或提升图像质量。
1.11.3版本核心更新
本次1.11.3版本带来了多项重要改进,主要集中在MNN推理引擎的增强和跨平台支持方面:
-
MNN推理引擎全面升级
- 对mnnsr模块进行了重要更新,提升了推理效率和稳定性
- 新增了对Windows平台的支持,理论上可兼容CPU/CUDA/OpenCL/Vulkan多种计算后端
- 特别说明:在测试环境中发现CUDA后端可能无法正常工作且无警告提示,开发者需注意此问题
-
Linux平台构建支持
- 为Linux CI添加了mnnsr构建支持
- 展示了如何构建支持OpenCL/CUDA/Vulkan后端的MNN和mnnsr
- 由于官方预编译的MNN .so文件仅支持CPU,因此自行构建MNN成为必要步骤
- 提示:CI构建结果可能无法在所有设备上正常工作,建议用户根据自身设备环境自行构建
-
模型转换工具新增
- 新增pth2mnn/onnx2mnn转换工具
- 用户可通过Web应用或本地运行进行模型格式转换
- 这一改进极大方便了开发者将PyTorch或ONNX格式的模型转换为MNN格式
技术实现细节
本次更新中,跨平台支持是最大的亮点。MNN作为阿里巴巴开源的轻量级深度学习推理引擎,具有以下优势:
- 多后端支持:可充分利用设备的不同计算单元(CPU/GPU/APU等)
- 高效推理:针对移动端进行了大量优化,减少内存占用和计算延迟
- 模型压缩:支持多种模型压缩技术,适合资源受限的移动设备
对于Windows平台的实现,开发者需要注意:
- CUDA后端的潜在问题需要特别关注
- 不同计算后端的选择会影响处理速度和结果质量
- 针对特定硬件的最佳后端可能需要通过实验确定
Linux平台的构建则更加灵活但也更复杂:
- 需要从源码构建以获得完整的多后端支持
- 构建过程需要考虑本地驱动和硬件兼容性
- 针对特定设备的优化可能需要调整构建参数
应用场景与使用建议
RealSR-NCNN-Android的1.11.3版本适合以下场景:
- 移动端图像增强:Android APK可直接安装使用,适合普通用户
- 桌面端批量处理:Windows版本适合需要处理大量图像的专业用户
- 模型开发与测试:新增的转换工具方便研究人员测试不同模型
使用建议:
- 普通Android用户可直接安装提供的APK文件
- Windows用户下载MNNSR-Win64.zip后需注意计算后端选择
- 开发者或高级用户建议根据自身环境从源码构建以获得最佳性能
未来展望
从本次更新可以看出,项目团队正在向更广泛的平台支持和更完善的工具链方向发展。预计未来版本可能会:
- 解决CUDA后端的兼容性问题
- 提供更详细的跨平台构建文档
- 增加更多预训练模型支持
- 优化现有模型的推理效率
1.11.3版本的发布标志着RealSR-NCNN-Android项目在跨平台支持和工具完善方面迈出了重要一步,为开发者和终端用户都提供了更多可能性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355