LLaMA-Factory项目中Qwen2.5 VL模型微调问题解析与解决方案
在LLaMA-Factory项目中使用LoRA方法微调Qwen2.5 VL模型时,开发者可能会遇到两个关键错误。本文将深入分析问题原因并提供完整的解决方案。
问题现象分析
当尝试使用LoRA微调Qwen2.5 VL模型时,开发者首先会遇到以下错误:
ValueError: Target module Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`.
这个错误表明当前使用的peft库(0.12.0版本)不支持Conv3d层的LoRA适配。Qwen2.5 VL模型的视觉部分包含3D卷积层,而早期版本的peft库仅支持有限类型的层结构。
升级peft库后的新问题
开发者可能会尝试升级peft库到0.14.0版本来解决上述问题,但随后会遇到第二个错误:
ValueError: Conv3d layer kernel must have 5 dimensions, not 1
这表明虽然新版本peft库理论上支持Conv3d层,但在实际应用中仍存在兼容性问题。这通常是由于LLaMA-Factory项目与peft新版本之间的接口不匹配导致的。
完整解决方案
要成功微调Qwen2.5 VL模型,需要采取以下步骤:
-
更新LLaMA-Factory项目:确保使用最新版本的LLaMA-Factory代码库,其中包含了对新版本peft库的兼容性改进。
-
配置LoRA目标层:在微调配置中明确指定
lora_target: all参数。这个设置会确保LoRA适配器应用于模型的所有可训练层,包括视觉部分的3D卷积层。 -
版本兼容性检查:虽然peft 0.14.0理论上支持Conv3d层,但建议使用LLaMA-Factory项目推荐的peft版本组合,以避免潜在的接口不匹配问题。
技术背景
Qwen2.5 VL是一个多模态模型,其视觉编码器部分采用了3D卷积神经网络来处理视频或时序图像数据。传统的LoRA实现主要针对语言模型的线性层设计,对视觉模型的特殊层结构支持有限。新版本的peft库和LLaMA-Factory项目通过扩展LoRA适配器类型,增强了对多模态模型的支持能力。
实践建议
对于希望微调Qwen2.5 VL模型的开发者,建议:
- 仔细检查环境配置,确保各组件版本兼容
- 从简单的配置开始,逐步增加复杂度
- 监控训练过程中的内存使用情况,3D卷积层的LoRA适配可能会增加显存消耗
- 考虑使用梯度检查点等技术来降低显存需求
通过以上措施,开发者应该能够成功地在LLaMA-Factory项目中使用LoRA方法微调Qwen2.5 VL模型。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00