【亲测免费】 开源项目rl-mpc-locomotion使用教程
2026-01-23 04:02:32作者:秋阔奎Evelyn
1、项目介绍
rl-mpc-locomotion 是一个用于四足机器人运动控制的深度强化学习(Deep RL)和模型预测控制(MPC)的开源项目。该项目旨在通过动态预测MPC控制器的权重参数,提供一个快速的四足机器人运动模拟和训练框架。控制框架由一个高层策略网络和一个低层模型预测控制器组成。MPC控制器参考了Cheetah Software,但使用Python编写,并完全开放了传感器数据与电机命令之间的接口,使得控制器可以轻松移植到任何主流模拟器中。
2、项目快速启动
安装依赖
首先,克隆项目仓库:
git clone https://github.com/silvery107/rl-mpc-locomotion.git
cd rl-mpc-locomotion
初始化子模块:
git submodule update --init
或者在第一步中使用 --recurse 选项同时克隆子模块:
git clone --recurse-submodules https://github.com/silvery107/rl-mpc-locomotion.git
创建conda环境:
conda env create -f environment.yml
安装 rsl_rl 模块:
cd extern/rsl_rl
pip install -e .
编译MPC求解器的Python绑定:
pip install -e .
快速启动
在Aliengo机器人上运行MPC控制器:
python RL_MPC_Locomotion.py --robot=Aliengo
支持的机器人类型包括Go1、A1和Aliengo。注意,你需要插入类似Xbox的游戏手柄来控制它,或者传递 --disable-gamepad 参数。默认控制模式为Fsm(有限状态机),你也可以尝试Min模式,这是一个没有FSM的最小MPC控制器。
3、应用案例和最佳实践
训练新策略
进入RL环境目录并训练新策略:
cd RL_Environment
python train.py task=Aliengo headless=False
按 v 键可以禁用查看器更新,再次按下可以恢复。设置 headless=True 可以在没有渲染的情况下进行训练。Tensorboard支持可用,运行以下命令查看训练日志:
tensorboard --logdir runs
加载预训练的检查点
加载预训练的检查点:
python train.py task=Aliengo checkpoint=runs/Aliengo/nn/Aliengo.pth test=True num_envs=4
设置 test=False 可以继续训练。
在Aliengo上运行预训练的权重策略
在 MPC_Controller/Parameters.py 中设置 bridge_MPC_to_RL 为 False,然后运行:
python RL_MPC_Locomotion.py --robot=Aliengo --mode=Policy --checkpoint=path/to/ckpt
如果没有提供检查点,它将加载最新的运行。
4、典型生态项目
- NVIDIA Isaac Gym: 用于并行模拟的框架,支持高效的RL训练。
- MIT Cheetah Software: 提供了MPC控制器的参考实现。
- OSQP, qpOASES, CVXOPT: 用于MPC求解的优化求解器。
通过这些生态项目的结合,rl-mpc-locomotion 能够提供一个完整的四足机器人运动控制解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178