首页
/ TorchEEG 开源项目使用教程

TorchEEG 开源项目使用教程

2024-10-10 03:08:31作者:董灵辛Dennis

1. 项目介绍

TorchEEG 是一个基于 PyTorch 的 EEG(脑电图)信号分析库。它旨在提供一个即插即用的 EEG 分析工具,使研究人员能够快速复现 EEG 分析工作,并开始新的 EEG 分析研究,而无需关注与研究焦点无关的技术细节。

TorchEEG 提供了统一的数据输入输出格式(IO),并实现了常用的 EEG 数据库,允许用户快速访问基准数据集并定义新的自定义数据集。此外,TorchEEG 还提供了 EEG 信号常用的数据预处理方法,并提供了离线和在线预处理的即插即用 API。

2. 项目快速启动

安装依赖

首先,确保你已经安装了 PyTorch。根据你的系统、CUDA 版本等信息安装 PyTorch:

# 使用 Conda 安装 PyTorch
# 例如,CPU 版本
conda install pytorch==1.11.0 torchvision torchaudio cpuonly -c pytorch

# 例如,GPU 版本
conda install pytorch==1.11.0 torchvision torchaudio cudatoolkit=11.3 -c pytorch

安装 TorchEEG

你可以使用 Anaconda 或 pip 安装 TorchEEG:

# 使用 Anaconda 安装
conda install -c tczhangzhi -c conda-forge torcheeg

# 使用 pip 安装
pip install torcheeg

快速开始

以下是一个简单的示例,展示如何使用 TorchEEG 加载 DEAP 数据集并进行分析:

from torcheeg.datasets import DEAPDataset
from torcheeg import transforms
from torcheeg.datasets.constants import DEAP_CHANNEL_LOCATION_DICT

# 指定数据集路径
dataset = DEAPDataset(
    io_path='/tmp_in/data_preprocessed_python',
    offline_transform=transforms.Compose([
        transforms.BandDifferentialEntropy(),
        transforms.ToGrid(DEAP_CHANNEL_LOCATION_DICT)
    ]),
    online_transform=transforms.ToTensor(),
    label_transform=transforms.Compose([
        transforms.Select('valence'),
        transforms.Binary(5.0)
    ]))

# 打印数据集信息
print(f"数据集大小: {len(dataset)}")
print(f"第一个样本: {dataset[0]}")

3. 应用案例和最佳实践

情感识别

TorchEEG 提供了多种数据预处理方法和深度学习模型,适用于情感识别任务。例如,可以使用 BandDifferentialEntropyToGrid 进行数据预处理,然后使用卷积神经网络(CNN)进行情感分类。

脑机接口

在脑机接口(BCI)应用中,TorchEEG 可以帮助研究人员快速构建和训练模型,以识别用户的意图或情绪状态。通过使用图卷积神经网络(GNN),可以更好地捕捉 EEG 信号中的空间信息。

4. 典型生态项目

PyTorch Geometric

TorchEEG 提供了与 PyTorch Geometric(PyG)的集成,用于将 EEG 数据转换为图结构,并使用图神经网络(GNN)进行分析。如果你需要使用图相关的算法,可以安装 PyG:

# 使用 Conda 安装 PyG
conda install pyg -c pyg

# 使用 pip 安装 PyG
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cpu.html

EEGNet

EEGNet 是一个专门用于 EEG 信号处理的深度学习模型,TorchEEG 提供了对 EEGNet 的支持,可以方便地集成到你的研究中。

通过以上步骤,你可以快速上手 TorchEEG,并开始你的 EEG 分析研究。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
609
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
184
34
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0