TorchEEG 开源项目使用教程
1. 项目介绍
TorchEEG 是一个基于 PyTorch 的 EEG(脑电图)信号分析库。它旨在提供一个即插即用的 EEG 分析工具,使研究人员能够快速复现 EEG 分析工作,并开始新的 EEG 分析研究,而无需关注与研究焦点无关的技术细节。
TorchEEG 提供了统一的数据输入输出格式(IO),并实现了常用的 EEG 数据库,允许用户快速访问基准数据集并定义新的自定义数据集。此外,TorchEEG 还提供了 EEG 信号常用的数据预处理方法,并提供了离线和在线预处理的即插即用 API。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 PyTorch。根据你的系统、CUDA 版本等信息安装 PyTorch:
# 使用 Conda 安装 PyTorch
# 例如,CPU 版本
conda install pytorch==1.11.0 torchvision torchaudio cpuonly -c pytorch
# 例如,GPU 版本
conda install pytorch==1.11.0 torchvision torchaudio cudatoolkit=11.3 -c pytorch
安装 TorchEEG
你可以使用 Anaconda 或 pip 安装 TorchEEG:
# 使用 Anaconda 安装
conda install -c tczhangzhi -c conda-forge torcheeg
# 使用 pip 安装
pip install torcheeg
快速开始
以下是一个简单的示例,展示如何使用 TorchEEG 加载 DEAP 数据集并进行分析:
from torcheeg.datasets import DEAPDataset
from torcheeg import transforms
from torcheeg.datasets.constants import DEAP_CHANNEL_LOCATION_DICT
# 指定数据集路径
dataset = DEAPDataset(
io_path='/tmp_in/data_preprocessed_python',
offline_transform=transforms.Compose([
transforms.BandDifferentialEntropy(),
transforms.ToGrid(DEAP_CHANNEL_LOCATION_DICT)
]),
online_transform=transforms.ToTensor(),
label_transform=transforms.Compose([
transforms.Select('valence'),
transforms.Binary(5.0)
]))
# 打印数据集信息
print(f"数据集大小: {len(dataset)}")
print(f"第一个样本: {dataset[0]}")
3. 应用案例和最佳实践
情感识别
TorchEEG 提供了多种数据预处理方法和深度学习模型,适用于情感识别任务。例如,可以使用 BandDifferentialEntropy 和 ToGrid 进行数据预处理,然后使用卷积神经网络(CNN)进行情感分类。
脑机接口
在脑机接口(BCI)应用中,TorchEEG 可以帮助研究人员快速构建和训练模型,以识别用户的意图或情绪状态。通过使用图卷积神经网络(GNN),可以更好地捕捉 EEG 信号中的空间信息。
4. 典型生态项目
PyTorch Geometric
TorchEEG 提供了与 PyTorch Geometric(PyG)的集成,用于将 EEG 数据转换为图结构,并使用图神经网络(GNN)进行分析。如果你需要使用图相关的算法,可以安装 PyG:
# 使用 Conda 安装 PyG
conda install pyg -c pyg
# 使用 pip 安装 PyG
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.11.0+cpu.html
EEGNet
EEGNet 是一个专门用于 EEG 信号处理的深度学习模型,TorchEEG 提供了对 EEGNet 的支持,可以方便地集成到你的研究中。
通过以上步骤,你可以快速上手 TorchEEG,并开始你的 EEG 分析研究。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00