Eclipse Che 项目中预拉取相关镜像的技术实现
背景介绍
在 Kubernetes 和 OpenShift 环境中,Eclipse Che 作为一个云原生开发环境平台,需要处理大量容器镜像的拉取和使用。为了提高用户体验和部署效率,预拉取相关镜像是一个常见的优化手段。本文将详细介绍在 Eclipse Che 项目中如何实现相关镜像的预拉取机制。
当前机制分析
目前 Eclipse Che 项目中已经实现了部分镜像的预拉取功能,主要是针对编辑器(editor)相关的镜像。这些镜像通过环境变量的形式定义在 operator 容器中,格式为 RELATED_IMAGE_editor_definition_*。
例如:
RELATED_IMAGE_editor_definition_che_code_latest_che_code_runtime_description=registry.redhat.io/devspaces/udi-rhel8@sha256:9199796c9dd82a16ebb2c4ff8d06b9727f392eb93eb7ffa2974ad6c16e3d8e5d
然而,当前机制存在以下不足:
- 仅包含编辑器相关镜像,缺少示例项目(devfile samples)使用的镜像
- 部分镜像引用可能存在不一致问题(如某些 IDEA 编辑器镜像错误地指向了 UDI 镜像)
技术实现方案
1. 镜像来源获取
Eclipse Che 提供了两个内部 API 端点用于获取相关资源信息:
- 编辑器列表:通过
/dashboard/api/editors端点获取 - 示例项目列表:通过
/dashboard/api/airgap-sample端点获取
需要注意的是,上游(upstream)版本的 Eclipse Che 目前不包含任何示例项目。
2. 镜像收集流程
Operator 需要执行以下步骤来收集所有相关镜像:
- 从上述 API 端点获取编辑器和示例项目列表
- 解析这些资源定义,提取其中使用的容器镜像
- 将这些镜像信息用于配置 ImagePuller Operator
- 将最终确定的镜像列表存储在
/tmp/external_images.txt文件中
3. 环境变量命名规范
对于新添加的示例项目镜像,建议采用以下命名格式:
RELATED_IMAGE_sample_devfile_[示例名称]=[镜像引用]
例如:
RELATED_IMAGE_sample_devfile_ansible_devspaces_demo=ghcr.io/ansible/ansible-workspace-env-reference@sha256:03d7f0fe6caaae62ff2266906b63d67ebd9cf6e4a056c7c0a0c1320e6cfbebce
实施建议
-
镜像一致性检查:确保所有编辑器镜像正确指向其专用镜像,避免错误引用通用 UDI 镜像的情况。
-
文档补充:为系统管理员提供如何读取和使用
/tmp/external_images.txt文件的文档说明。 -
自动化测试:添加自动化测试用例,验证所有相关镜像是否被正确识别和预拉取。
-
版本兼容性:考虑不同版本 Eclipse Che 的兼容性,特别是上游版本和下游发行版(如 Red Hat Dev Spaces)之间的差异。
总结
通过扩展 Eclipse Che Operator 的预拉取镜像机制,将示例项目使用的镜像纳入管理范围,可以显著提高工作空间启动速度和部署可靠性。这一改进需要 Operator 能够动态获取和解析编辑器和示例项目定义,并采用一致的命名规范将这些镜像信息暴露给集群管理组件。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00