Eclipse Che 项目中预拉取相关镜像的技术实现
背景介绍
在 Kubernetes 和 OpenShift 环境中,Eclipse Che 作为一个云原生开发环境平台,需要处理大量容器镜像的拉取和使用。为了提高用户体验和部署效率,预拉取相关镜像是一个常见的优化手段。本文将详细介绍在 Eclipse Che 项目中如何实现相关镜像的预拉取机制。
当前机制分析
目前 Eclipse Che 项目中已经实现了部分镜像的预拉取功能,主要是针对编辑器(editor)相关的镜像。这些镜像通过环境变量的形式定义在 operator 容器中,格式为 RELATED_IMAGE_editor_definition_*。
例如:
RELATED_IMAGE_editor_definition_che_code_latest_che_code_runtime_description=registry.redhat.io/devspaces/udi-rhel8@sha256:9199796c9dd82a16ebb2c4ff8d06b9727f392eb93eb7ffa2974ad6c16e3d8e5d
然而,当前机制存在以下不足:
- 仅包含编辑器相关镜像,缺少示例项目(devfile samples)使用的镜像
- 部分镜像引用可能存在不一致问题(如某些 IDEA 编辑器镜像错误地指向了 UDI 镜像)
技术实现方案
1. 镜像来源获取
Eclipse Che 提供了两个内部 API 端点用于获取相关资源信息:
- 编辑器列表:通过
/dashboard/api/editors端点获取 - 示例项目列表:通过
/dashboard/api/airgap-sample端点获取
需要注意的是,上游(upstream)版本的 Eclipse Che 目前不包含任何示例项目。
2. 镜像收集流程
Operator 需要执行以下步骤来收集所有相关镜像:
- 从上述 API 端点获取编辑器和示例项目列表
- 解析这些资源定义,提取其中使用的容器镜像
- 将这些镜像信息用于配置 ImagePuller Operator
- 将最终确定的镜像列表存储在
/tmp/external_images.txt文件中
3. 环境变量命名规范
对于新添加的示例项目镜像,建议采用以下命名格式:
RELATED_IMAGE_sample_devfile_[示例名称]=[镜像引用]
例如:
RELATED_IMAGE_sample_devfile_ansible_devspaces_demo=ghcr.io/ansible/ansible-workspace-env-reference@sha256:03d7f0fe6caaae62ff2266906b63d67ebd9cf6e4a056c7c0a0c1320e6cfbebce
实施建议
-
镜像一致性检查:确保所有编辑器镜像正确指向其专用镜像,避免错误引用通用 UDI 镜像的情况。
-
文档补充:为系统管理员提供如何读取和使用
/tmp/external_images.txt文件的文档说明。 -
自动化测试:添加自动化测试用例,验证所有相关镜像是否被正确识别和预拉取。
-
版本兼容性:考虑不同版本 Eclipse Che 的兼容性,特别是上游版本和下游发行版(如 Red Hat Dev Spaces)之间的差异。
总结
通过扩展 Eclipse Che Operator 的预拉取镜像机制,将示例项目使用的镜像纳入管理范围,可以显著提高工作空间启动速度和部署可靠性。这一改进需要 Operator 能够动态获取和解析编辑器和示例项目定义,并采用一致的命名规范将这些镜像信息暴露给集群管理组件。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00