Orval项目中Fetch响应对象定制化的最佳实践
2025-06-17 12:58:22作者:董斯意
背景介绍
在现代前端开发中,API客户端生成工具Orval因其强大的OpenAPI规范集成能力而广受欢迎。最新版本中,Orval默认生成的fetch响应对象包含了status状态码、headers响应头和data数据体三个部分。这种设计虽然全面,但在实际业务场景中可能会遇到响应头过大影响性能的问题。
问题分析
开发者在使用自定义fetch函数时,通常需要根据业务需求定制响应对象的结构。Orval当前提供的配置项includeHttpResponseReturnType是一个布尔值开关,只能控制是否包含完整的HTTP响应(包含status和headers),无法实现更细粒度的控制。
例如,某些场景下:
- 只需要获取状态码和数据体
- 需要排除可能包含大量信息的响应头
- 仅需要原始数据体
当前解决方案虽然可以通过类型断言as T绕过类型检查,但这会带来类型安全问题,违反了TypeScript的类型安全原则。
技术方案演进
现有解决方案
- 完全响应模式:启用
includeHttpResponseReturnType获取完整响应对象 - 自定义fetch函数:通过类型断言忽略不需要的字段
- 数据体提取:完全关闭响应包装,仅获取数据
改进建议
理想情况下,Orval应该提供更细粒度的响应控制选项,例如:
{
httpResponse: 'none' | 'status' | 'headers' | 'all'
}
最佳实践建议
对于当前版本的用户,推荐以下实现方案:
- 最小化响应对象(推荐方案)
export const optimizedFetch = async <T>(path: string, options: RequestInit): Promise<{
status: number;
data: T;
}> => {
const response = await fetch(path, options);
const data = await response.json();
return {
status: response.status,
data
};
}
- 类型安全包装器
type MinimalResponse<T> = {
status: number;
data: T;
};
function createApiClient() {
return {
get: <T>(url: string) =>
customFetch<MinimalResponse<T>>(url, { method: 'GET' })
};
}
- 响应转换中间件
const transformMiddleware = (response: FullResponse) => ({
status: response.status,
data: response.data
});
性能优化考量
在处理大型API响应时,特别需要注意:
- 响应头可能包含大量Set-Cookie信息
- 某些服务会添加诊断头信息
- 缓存控制头可能很冗长
建议在以下场景考虑精简响应:
- 移动端应用
- 高频调用的API
- 带宽受限的环境
未来展望
随着TypeScript 5.0+版本的特性增强,未来可能实现更优雅的类型变换方案。社区也在探索基于装饰器的API客户端配置方式,这将为响应对象定制提供更多可能性。
对于Orval用户来说,理解这些底层机制有助于构建更健壮的前端架构,在类型安全性和运行性能之间取得最佳平衡。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758