Torchmetrics中SpearmanCorrCoef在大规模重复数据上的性能优化
2025-07-03 04:11:15作者:柏廷章Berta
背景介绍
在机器学习评估指标计算领域,Torchmetrics是一个广泛使用的PyTorch指标计算库。其中,Spearman相关系数(SpearmanCorrCoef)是一种常用的非参数统计方法,用于衡量两个变量之间的单调关系。然而,在处理大规模数据且包含大量重复元素时,当前实现存在明显的性能瓶颈。
问题分析
当前Torchmetrics中Spearman相关系数的实现主要性能瓶颈在于_rank_data函数。该函数负责计算数据的秩次(ranking),现有实现采用逐个元素遍历的方式处理数据,当遇到以下情况时效率显著下降:
- 数据规模大(tensor元素数量多)
- 数据中存在大量重复值
这种实现方式的时间复杂度较高,无法充分利用PyTorch的向量化计算优势,导致在大规模数据场景下计算速度缓慢。
优化方案
针对上述问题,提出了一种基于PyTorch内置高效操作的优化实现方案:
def _rank_data(data: Tensor) -> Tensor:
n = data.numel()
rank = torch.empty_like(data, dtype=torch.int32)
idx = data.argsort()
rank[idx[:n]] = torch.arange(1, n + 1, dtype=torch.int32, device=data.device)
uniq, inv, counts = torch.unique(
data, sorted=True, return_inverse=True, return_counts=True
)
sum_ranks = torch.zeros_like(uniq, dtype=torch.int32)
sum_ranks.scatter_add_(0, inv, rank.to(torch.int32))
mean_ranks = sum_ranks / counts
return mean_ranks[inv]
技术原理
该优化方案主要利用了以下几个PyTorch高效操作:
- 张量排序:使用
argsort()对数据进行排序,获取排序后的索引 - 唯一值识别:通过
torch.unique一次性识别所有唯一值及其出现次数 - 分散相加:利用
scatter_add_操作高效计算相同值的秩次和 - 均值计算:对相同值的秩次求平均,得到最终的秩次结果
这种方法完全避免了Python层面的循环操作,全部计算都在PyTorch的C++后端完成,能够充分利用GPU的并行计算能力。
性能对比
虽然原issue中没有提供具体的性能测试数据,但根据PyTorch操作的特性可以预期:
- 对于无重复数据:两种实现性能相近
- 对于大量重复数据:优化后的实现性能显著提升
- 数据规模越大:优化效果越明显
应用场景
这种优化特别适用于以下场景:
- 处理离散化数据(如分类数据转换为数值)
- 处理经过分箱处理的连续数据
- 数据中存在大量相同值的情况
总结
通过对Torchmetrics中Spearman相关系数计算的核心函数_rank_data进行优化,可以显著提升在大规模重复数据场景下的计算效率。这种优化不仅适用于Spearman相关系数计算,其核心思想也可以推广到其他需要计算秩次的统计方法中。
对于Torchmetrics用户而言,这一优化将使得在大规模数据集上计算Spearman相关系数更加高效,特别是在处理具有大量重复值的数据时,性能提升将更为明显。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355