NSFW JS 技术文档
2026-01-25 05:19:10作者:温玫谨Lighthearted
NSFW JS 是一个基于客户端的不适当内容检测库,允许你在用户的浏览器中快速识别不当图像。本文档旨在指导您如何安装、使用该库,并理解其API。
安装指南
要开始使用 NSFW JS,首先确保您的项目已经准备好了 TensorFlow.js 的依赖,因为它是 NSFW JS 的核心。通过以下命令添加 TensorFlow.js 和 NSFW JS 到您的项目中:
# 对于npm用户
npm install @tensorflow/tfjs nsfwjs
# 或者对于yarn用户
yarn add @tensorflow/tfjs nsfwjs
如果您更偏好在HTML中直接通过script标签引入,需要分别获取TensorFlow.js和NSFW JS的CDN链接,但推荐还是通过包管理器进行依赖管理。
项目的使用说明
NSFW JS 主要提供两个关键功能:加载模型(load)和分类图像(classify)。
快速上手示例
- 使用异步/等待语法:
import * as nsfwjs from "nsfwjs";
(async () => {
const imgElement = document.getElementById("yourImageId");
const model = await nsfwjs.load();
const predictions = await model.classify(imgElement);
console.log("预测结果:", predictions);
})();
- 不使用异步/等待的版本:
import * as nsfwjs from "nsfwjs";
nsfwjs.load().then(model => {
model.classify(document.getElementById("yourImageId")).then(predictions => {
console.log("预测结果:", predictions);
});
});
项目API使用文档
加载模型 (load)
const model = await nsfwjs.load(["MobileNetV2", "MobileNetV2Mid", "InceptionV3"][0]);
支持指定模型类型或自定义路径加载模型,可以通过改变第一个参数来选择不同的预训练模型。
缓存 (save 和 load 方法)
为了提高性能,可以将模型保存到IndexedDB中以供后续使用:
await initialLoad.model.save("indexeddb://myModel");
const cachedModel = await nsfwjs.load("indexeddb://myModel");
图像分类 (classify)
调用此方法对图像元素进行分类,可选地限制返回的预测数量:
const predictions = await model.classify(imgElement, 3); // 返回概率最高的前三个类别
项目安装方式与环境配置
NSFW JS设计为与Web端项目兼容,通过上述安装指南完成基本配置后,在生产环境中启用TensorFlow.js的生产模式以优化性能:
import * as tf from '@tensorflow/tfjs';
tf.enableProdMode();
考虑应用的实际情况,您可能还需要考虑自托管模型文件以减少初始加载时间,并利用缓存策略避免重复下载。
NSFW JS简化了不适当内容的检测流程,使其成为客户端内容过滤的有力工具。通过遵循以上步骤,您可以有效地将其集成到您的应用程序中,增强用户体验并保证网站内容的适宜性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
748
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
318
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347