Gatling 3.13.1版本升级中的JVM模块访问问题解析
问题背景
Gatling作为一款优秀的负载测试工具,在3.13.1版本中引入了一项优化,通过字符串驻留(String Interning)技术来减少内存使用。这项优化需要访问Java语言内部的一些API,这在Java 9引入模块系统后变得更加严格。
核心问题表现
当用户从Gatling 3.12.0升级到3.13.1版本时,可能会遇到如下错误:
java.lang.IllegalAccessException: module java.base does not open java.lang to unnamed module
这个错误发生在Gatling尝试使用MethodHandles.privateLookupIn
方法访问java.lang
包中的内部API时,由于Java模块系统的强封装性而导致的访问权限问题。
问题根源分析
Java 9引入的模块系统(Jigsaw)对JDK内部API的访问进行了更严格的控制。Gatling 3.13.1为了优化性能,新增了字符串驻留功能,这需要访问java.lang.String
的内部实现。在默认情况下,java.base
模块不会向未命名模块开放java.lang
包。
解决方案
1. 使用最新版gatling-maven-plugin
Gatling团队已经在gatling-maven-plugin 4.11.0版本中修复了这个问题。新版本会自动添加必要的JVM参数:
<plugin>
<groupId>io.gatling</groupId>
<artifactId>gatling-maven-plugin</artifactId>
<version>4.11.0</version>
<configuration>
<runMultipleSimulations>true</runMultipleSimulations>
</configuration>
</plugin>
2. 手动添加JVM参数
如果由于某些原因无法升级插件版本,可以手动添加所需的JVM参数:
<plugin>
<groupId>io.gatling</groupId>
<artifactId>gatling-maven-plugin</artifactId>
<configuration>
<jvmArgs>
<jvmArg>--add-opens=java.base/java.lang=ALL-UNNAMED</jvmArg>
</jvmArgs>
<runMultipleSimulations>true</runMultipleSimulations>
</configuration>
</plugin>
3. 注意JVM参数配置方式
特别需要注意的是,在配置JVM参数时,正确的XML格式应该是:
<jvmArgs>
<jvmArg>参数1</jvmArg>
<jvmArg>参数2</jvmArg>
</jvmArgs>
而不是直接将参数放在<jvmArgs>
标签内。
进阶配置
对于需要自定义JVM参数的用户,gatling-maven-plugin提供了overrideJvmArgs
选项来控制行为:
overrideJvmArgs=true
:完全覆盖默认JVM参数overrideJvmArgs=false
:在默认参数基础上追加自定义参数
推荐配置方式:
<configuration>
<overrideJvmArgs>true</overrideJvmArgs>
<jvmArgs>
<jvmArg>-Dcustom.property=value</jvmArg>
<jvmArg>--add-opens=java.base/java.lang=ALL-UNNAMED</jvmArg>
</jvmArgs>
</configuration>
技术背景
Java模块系统(Project Jigsaw)是Java 9引入的重要特性,它通过模块化JDK增强了安全性和可维护性。模块可以明确声明它向其他模块公开哪些包(通过exports),以及哪些模块可以反射访问其非公开成员(通过opens)。
Gatling 3.13.1的字符串驻留优化需要反射访问java.lang.String
的内部实现,因此需要--add-opens
参数来临时放宽模块访问限制。这是一种权衡安全性和性能的常见做法。
最佳实践建议
- 优先升级到gatling-maven-plugin 4.11.0或更高版本
- 如果必须自定义JVM参数,确保包含必要的模块开放指令
- 在持续集成环境中验证配置,确保测试能够正常运行
- 定期关注Gatling的版本更新,及时获取性能优化和问题修复
通过理解这些技术细节,用户可以更顺利地完成Gatling版本升级,并充分利用其性能优化特性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









