Deque 开源项目最佳实践教程
2025-04-25 11:11:50作者:尤峻淳Whitney
1. 项目介绍
Deque 是一个 Python 开源项目,它提供了一个双端队列(deque)的实现,支持在队列的两端高效地插入和删除元素。这个项目是对 Python 标准库中的 collections.deque 类的扩展,提供了更多高级功能和优化。
2. 项目快速启动
要开始使用 Deque,首先需要克隆项目到本地:
git clone https://github.com/kinghajj/deque.git
然后,进入项目目录并安装项目依赖:
cd deque
pip install -r requirements.txt
接下来,可以通过以下方式导入并使用 Deque:
from deque import Deque
# 创建一个双端队列
dq = Deque()
# 添加元素到队列前端
dq.appendleft('前端元素')
# 添加元素到队列后端
dq.append('后端元素')
# 打印队列内容
print(dq)
# 从队列前端移除元素
print(dq.popleft())
# 从队列后端移除元素
print(dq.pop())
3. 应用案例和最佳实践
案例一:使用 Deque 实现一个最近使用(LRU)缓存
from deque import Deque
class LRUCache:
def __init__(self, capacity):
self.cache = Deque()
self.capacity = capacity
def get(self, key):
# 查找元素,如果存在则将其移动到队列尾部
for i, (k, v) in enumerate(self.cache):
if k == key:
self.cache.remove((k, v))
self.cache.append((k, v))
return v
return -1
def put(self, key, value):
# 添加新元素或更新现有元素,并保持队列的顺序
for i, (k, v) in enumerate(self.cache):
if k == key:
self.cache.remove((k, v))
elif len(self.cache) >= self.capacity:
self.cache.popleft()
self.cache.append((key, value))
# 使用案例
lru_cache = LRUCache(2)
lru_cache.put(1, 1)
lru_cache.put(2, 2)
print(lru_cache.get(1)) # 输出 1
lru_cache.put(3, 3) # 容量超出,移除 key 为 2 的元素
print(lru_cache.get(2)) # 输出 -1 (不存在)
lru_cache.put(4, 4) # 容量超出,移除 key 为 1 的元素
print(lru_cache.get(1)) # 输出 -1 (不存在)
print(lru_cache.get(3)) # 输出 3
print(lru_cache.get(4)) # 输出 4
最佳实践
- 当需要频繁在队列两端添加或移除元素时,使用
Deque可以提供比列表更高的性能。 - 在实现缓存或需要维护元素插入顺序的数据结构时,
Deque是一个很好的选择。
4. 典型生态项目
- LRU Cache: 如上述案例所示,使用
Deque实现的最近使用缓存。 - Task Queue: 在任务队列中,可以使用
Deque来高效地添加和执行任务。
以上就是关于 Deque 开源项目的最佳实践教程。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669