使用ciftify工具包实现个性化内在网络拓扑分析(PINT)
什么是PINT技术
个性化内在网络拓扑(Personalized Intrinsic Network Topography, PINT)是一种基于功能磁共振成像(fMRI)数据的分析方法,它能够为每个被试找到"个性化"的兴趣区域(ROI)。这项技术最初由Dickie等人(2018)提出,主要用于研究自闭症谱系障碍(ASD)中的功能连接缺陷。
PINT算法的核心思想是:对于数据集中的每个被试,算法会将所谓的模板兴趣区域(ROI)位置调整到附近的一个皮层位置,即"个性化"ROI,这个位置能够最大化该ROI与其所属网络内其他ROI之间的相关性。
PINT分析前的准备工作
在运行PINT分析之前,需要确保已经完成了以下准备工作:
- 预处理fMRI数据并转换为cifti格式
- 数据已映射到LR_32k表面
- 准备好模板ROI定义文件(如Yeo7_2011_80verts.csv)
运行PINT分析
主要命令:ciftify_PINT_vertices
这是执行PINT分析的核心命令,基本语法结构如下:
ciftify_PINT_vertices [选项] <功能数据> <左脑表面> <右脑表面> <输入顶点文件> <输出前缀>
关键参数说明:
- 功能数据:预处理后的fMRI数据(.dtseries.nii格式)
- 表面文件:被试的左右脑表面文件(.surf.gii格式)
- 输入顶点文件:包含模板ROI顶点信息的CSV文件
- 输出前缀:指定输出文件的前缀路径
常用选项:
--pre-smooth:指定迭代前的平滑参数(FWHM)--sampling-radius:采样ROI的半径(默认6mm)--search-radius:搜索ROI的半径(默认6mm)--padding-radius:ROI中心间最小距离半径(默认12mm)--pcorr:使用网络内最大化偏相关(默认)--corr:使用完全相关而非偏相关
实际应用示例
ciftify_PINT_vertices --pcorr \
${CIFTIFY_WORKDIR}/sub-50004/MNINonLinear/clean.dtseries.nii \
${CIFTIFY_WORKDIR}/sub-50004/MNINonLinear/fsaverage_LR32k/sub-50004.L.midthickness.32k_fs_LR.surf.gii \
${CIFTIFY_WORKDIR}/sub-50004/MNINonLinear/fsaverage_LR32k/sub-50004.R.midthickness.32k_fs_LR.surf.gii \
/PINT_out/Yeo7_2011_80verts.csv \
/PINT_out/sub-50004/sub-50004_task-rest
输出文件说明
PINT分析完成后会生成以下文件:
_pint.log:包含运行设置和迭代次数的日志文件_summary.csv:顶点摘要文件,其中pvertex列包含新的"个性化"顶点位置_tvertex_meants.csv:从模板ROI提取的fMRI时间序列_pvertex_meants.csv:从个性化ROI提取的fMRI时间序列
质量检查与可视化
cifti_vis_PINT命令
PINT分析完成后,强烈建议使用cifti_vis_PINT命令生成质量控制可视化结果。该命令有三种模式:
snaps模式:生成快照图像subject模式:为单个被试创建QC页面index模式:创建顶层索引HTML页面
使用示例
cifti_vis_PINT subject \
${CIFTIFY_WORKDIR}/sub-50004/MNINonLinear/clean.dtseries.nii \
sub-50004 \
PINT_out/sub-50004/sub-50004_task-rest_summary.csv
创建所有被试的QC页面后,应运行index模式生成顶层索引:
cifti_vis_PINT index
PINT后处理分析
1. 合并摘要文件
使用ciftify_postPINT1_concat命令可以将所有被试的_summary.csv文件合并为一个CSV文件,便于统计分析。该命令还会重新计算模板顶点与个性化顶点在标准HCP S1200表面上的距离。
ciftify_postPINT1_concat all_PINT_summaries_concat.csv sub*/*_summary.csv
2. 被试间距离测量
ciftify_postPINT2_sub2sub命令可以测量不同被试间个性化顶点之间的距离,这对于计算测试-重测可靠性非常重要。
ciftify_postPINT2_sub2sub [选项] <合并的PINT输出> <输出文件>
技术要点与建议
- ROI半径选择:默认6mm的ROI半径适用于大多数研究,但对于高分辨率数据可适当减小
- 相关性选择:偏相关(--pcorr)通常是更好的选择,因为它能控制其他网络的影响
- 距离度量:在统计分析中,建议使用
std_distance列作为主要距离度量 - 质量控制:务必检查每个被试的QC可视化结果,确保PINT结果可靠
引用说明
使用PINT方法时,请引用原始文献: Dickie EW, et al. Personalized Intrinsic Network Topography Mapping and Functional Connectivity Deficits in Autism Spectrum Disorder. Biol Psychiatry. 2018.
通过ciftify工具包中的PINT分析流程,研究人员能够获得更加个性化的功能连接分析结果,特别适用于研究个体差异较大的临床群体,如自闭症谱系障碍患者。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00