DeepVariant中VAF计算原理深度解析
2025-06-24 11:09:36作者:尤峻淳Whitney
概述
在基因组变异检测领域,DeepVariant作为谷歌开发的高精度变异检测工具,其输出结果中的VAF(Variant Allele Frequency,变异等位基因频率)字段常被用于评估变异在样本中的比例。然而,许多用户对VAF的计算方式存在误解,特别是与AD(Allelic Depth,等位基因深度)字段的关系。本文将深入解析DeepVariant中VAF的计算原理及其与AD字段的关系。
VAF与AD字段的基本概念
在DeepVariant的VCF输出中,AD字段表示每个等位基因的测序深度,而VAF字段则表示变异等位基因的频率。常见的误解是认为VAF等于变异等位基因深度除以所有等位基因深度之和(AD[1]/(AD[0]+AD[1])),但实际上DeepVariant采用了不同的计算方式。
VAF的真实计算方式
DeepVariant中的VAF计算遵循以下公式:
VAF = AD[1] / DP
其中:
- AD[1]:变异等位基因的测序深度
- DP:该位点的总测序深度(Depth)
示例分析
以一个实际变异为例:
chr13 32323151 . A AT 45.1 PASS . GT:GQ:DP:AD:VAF:PL 0/1:21:24:6,6:0.25:45,24,44
解析各字段:
- DP=24(总深度)
- AD=[6,6](参考等位基因深度=6,变异等位基因深度=6)
- VAF=6/24=0.25
另一个示例:
chr13 32349216 . CA C 8.3 PASS . GT:GQ:DP:AD:VAF:PL 0/1:8:23:6,12:0.521739:7,0,22
解析:
- DP=23
- AD=[6,12]
- VAF=12/23≈0.521739
为什么AD[0]+AD[1]≠DP?
许多用户会注意到AD[0](参考等位基因深度)和AD[1](变异等位基因深度)之和并不总是等于DP(总深度)。这是因为:
- 低质量读段过滤:部分读段可能因质量过低未被计入任何等位基因
- 复杂变异场景:在多等位基因位点,可能存在未被报告的次要等位基因
- 比对模糊性:部分读段可能无法明确分配到特定等位基因
技术意义与临床应用
理解VAF的正确计算方式对以下应用场景至关重要:
- 体细胞变异检测:准确评估肿瘤样本中变异等位基因的比例
- 嵌合体分析:识别组织特异性或发育阶段特异性变异
- 变异验证:评估测序数据的支持程度
- 质量控制:判断变异检测的可靠性
最佳实践建议
- 在分析DeepVariant结果时,应同时考虑VAF和AD字段
- 对于关键变异,建议手动计算VAF以验证结果
- 注意DP与AD总和之间的差异,这可能提示数据质量问题
- 在临床应用中,应建立基于VAF的过滤阈值
总结
DeepVariant中的VAF计算采用变异等位基因深度与总深度的比值,而非简单的两个等位基因深度之比。这种计算方式更全面地反映了变异在全部测序数据中的比例,避免了因未计入低质量或模糊比对读段而导致的偏差。正确理解这一计算原理对于准确解释变异检测结果具有重要意义。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
667
153
Ascend Extension for PyTorch
Python
216
235
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
303
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
255
321
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
63
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
651
仓颉编程语言运行时与标准库。
Cangjie
141
876
仓颉编译器源码及 cjdb 调试工具。
C++
133
866