AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可在AWS云环境中高效运行。这些容器镜像包含了流行的深度学习框架及其依赖项,使用户能够快速部署和运行深度学习工作负载,而无需花费大量时间在环境配置上。
近日,AWS DLC项目发布了PyTorch 2.5.1推理镜像的新版本,为开发者提供了更强大的工具来部署PyTorch模型。这些镜像针对CPU和GPU环境分别进行了优化,支持Python 3.11运行时环境,并基于Ubuntu 22.04操作系统构建。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU优化版本:适用于没有GPU加速的环境,镜像标签为
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2-v1.6。该版本包含了PyTorch 2.5.1及其CPU优化版本,以及常用的科学计算和数据处理的Python库。 -
GPU优化版本:针对NVIDIA CUDA 12.4环境进行了优化,镜像标签为
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2-v1.6。除了包含CPU版本的所有功能外,还支持GPU加速计算,并预装了CUDA相关的库和工具。
关键特性与改进
-
PyTorch 2.5.1支持:两个镜像都基于PyTorch 2.5.1构建,这是PyTorch框架的一个稳定版本,包含了多项性能优化和功能改进。
-
Python 3.11环境:镜像使用Python 3.11作为默认Python环境,相比之前的版本,Python 3.11在性能和内存使用方面都有显著提升。
-
Ubuntu 22.04基础:基于Ubuntu 22.04 LTS操作系统构建,提供了长期支持的安全更新和稳定性保障。
-
丰富的预装库:镜像中预装了常用的数据处理和科学计算库,包括:
- NumPy 2.1.3:用于高效的多维数组计算
- SciPy 1.14.1:提供科学计算工具
- OpenCV 4.10.0:计算机视觉库
- Pandas 2.2.3(仅GPU版本):数据分析和处理工具
- TorchServe 0.12.0:PyTorch模型服务框架
-
CUDA 12.4支持:GPU版本针对NVIDIA CUDA 12.4进行了优化,包含了必要的CUDA库和cuDNN加速库。
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
-
模型部署:快速部署训练好的PyTorch模型到生产环境,无需担心依赖管理和环境配置问题。
-
推理服务:使用TorchServe框架构建高效的模型推理服务,支持批处理、模型版本控制等高级功能。
-
开发测试:为PyTorch项目提供一致的开发环境,确保开发、测试和生产环境的一致性。
-
云端AI服务:在AWS EC2实例上快速启动PyTorch推理服务,充分利用云计算的弹性优势。
技术细节
对于需要深入了解镜像内容的开发者,AWS提供了详细的软件包清单:
-
CPU版本包含了PyTorch CPU优化版本、TorchVision、TorchAudio等核心组件,以及NumPy、SciPy等科学计算库。
-
GPU版本额外包含了CUDA 12.4相关的库文件,如cuBLAS、cuDNN等,以及MPI支持(通过mpi4py包)。
两个版本都预装了AWS CLI工具,方便与AWS服务进行交互,以及常用的开发工具如Emacs(可通过apt安装)。
总结
AWS Deep Learning Containers提供的这些PyTorch推理镜像,为开发者提供了开箱即用的深度学习环境,大大简化了模型部署的复杂度。无论是CPU还是GPU环境,这些镜像都经过了充分优化,能够提供良好的性能表现。对于需要在AWS云上部署PyTorch模型的企业和开发者来说,这些预构建的容器镜像是一个高效、可靠的选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00