AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可在AWS云环境中高效运行。这些容器镜像包含了流行的深度学习框架及其依赖项,使用户能够快速部署和运行深度学习工作负载,而无需花费大量时间在环境配置上。
近日,AWS DLC项目发布了PyTorch 2.5.1推理镜像的新版本,为开发者提供了更强大的工具来部署PyTorch模型。这些镜像针对CPU和GPU环境分别进行了优化,支持Python 3.11运行时环境,并基于Ubuntu 22.04操作系统构建。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU优化版本:适用于没有GPU加速的环境,镜像标签为
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2-v1.6。该版本包含了PyTorch 2.5.1及其CPU优化版本,以及常用的科学计算和数据处理的Python库。 -
GPU优化版本:针对NVIDIA CUDA 12.4环境进行了优化,镜像标签为
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2-v1.6。除了包含CPU版本的所有功能外,还支持GPU加速计算,并预装了CUDA相关的库和工具。
关键特性与改进
-
PyTorch 2.5.1支持:两个镜像都基于PyTorch 2.5.1构建,这是PyTorch框架的一个稳定版本,包含了多项性能优化和功能改进。
-
Python 3.11环境:镜像使用Python 3.11作为默认Python环境,相比之前的版本,Python 3.11在性能和内存使用方面都有显著提升。
-
Ubuntu 22.04基础:基于Ubuntu 22.04 LTS操作系统构建,提供了长期支持的安全更新和稳定性保障。
-
丰富的预装库:镜像中预装了常用的数据处理和科学计算库,包括:
- NumPy 2.1.3:用于高效的多维数组计算
- SciPy 1.14.1:提供科学计算工具
- OpenCV 4.10.0:计算机视觉库
- Pandas 2.2.3(仅GPU版本):数据分析和处理工具
- TorchServe 0.12.0:PyTorch模型服务框架
-
CUDA 12.4支持:GPU版本针对NVIDIA CUDA 12.4进行了优化,包含了必要的CUDA库和cuDNN加速库。
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
-
模型部署:快速部署训练好的PyTorch模型到生产环境,无需担心依赖管理和环境配置问题。
-
推理服务:使用TorchServe框架构建高效的模型推理服务,支持批处理、模型版本控制等高级功能。
-
开发测试:为PyTorch项目提供一致的开发环境,确保开发、测试和生产环境的一致性。
-
云端AI服务:在AWS EC2实例上快速启动PyTorch推理服务,充分利用云计算的弹性优势。
技术细节
对于需要深入了解镜像内容的开发者,AWS提供了详细的软件包清单:
-
CPU版本包含了PyTorch CPU优化版本、TorchVision、TorchAudio等核心组件,以及NumPy、SciPy等科学计算库。
-
GPU版本额外包含了CUDA 12.4相关的库文件,如cuBLAS、cuDNN等,以及MPI支持(通过mpi4py包)。
两个版本都预装了AWS CLI工具,方便与AWS服务进行交互,以及常用的开发工具如Emacs(可通过apt安装)。
总结
AWS Deep Learning Containers提供的这些PyTorch推理镜像,为开发者提供了开箱即用的深度学习环境,大大简化了模型部署的复杂度。无论是CPU还是GPU环境,这些镜像都经过了充分优化,能够提供良好的性能表现。对于需要在AWS云上部署PyTorch模型的企业和开发者来说,这些预构建的容器镜像是一个高效、可靠的选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00