ModelScope/EvalScope v0.13.0 发布:大模型评测能力全面升级
ModelScope/EvalScope 是一个专注于大语言模型评测的开源框架,旨在为研究人员和开发者提供标准化、可扩展的模型评估工具。最新发布的 v0.13.0 版本带来了两项重要功能升级,显著提升了框架的评测能力和适用范围。
LLM-as-an-Evaluator 评测模式
本次更新的核心亮点是引入了 LLM-as-an-Evaluator 评测机制。这是一种创新的评估方法,利用大语言模型本身作为评估者来对其他模型的输出进行打分。这种方法特别适合评估那些传统指标难以量化的质量维度,如回答的流畅性、创造性和逻辑性等。
在实际应用中,开发者可以指定任意一个大模型作为"评估者",通过精心设计的prompt让该模型对被测模型的输出进行评分。这种评估方式更加接近人类专家的判断过程,能够捕捉到传统自动评测指标容易忽略的细微差别。
新增三大评测基准
v0.13.0 版本同时新增了对三个重要评测基准的支持:
-
SimpleQA:一个基础的问答评测集,专注于评估模型在简单问题上的回答能力。这个基准特别适合快速验证模型的基本问答性能。
-
Chinese SimpleQA:针对中文环境的简单问答评测集。考虑到中文语言处理的特殊性,这个基准为中文大模型提供了更贴合的评估场景。
-
LiveCodeBench:一个专注于代码生成和编程问题解决能力的评测基准。随着大模型在编程辅助领域的应用日益广泛,这个基准为评估模型的编码能力提供了标准化的测试环境。
值得注意的是,SimpleQA 和 Chinese SimpleQA 这两个基准需要配合 LLM-as-an-Evaluator 机制使用,因为它们主要评估的是回答的整体质量而非简单的准确性。
技术实现与使用建议
在技术实现上,新版本通过灵活的接口设计,使得用户可以方便地配置评测参数。对于LLM-as-an-Evaluator模式,用户需要指定作为评估者的模型名称及相关参数。评测框架会自动化处理prompt构建、结果收集和分数计算的全过程。
对于希望使用这些新功能的开发者,建议从SimpleQA基准开始尝试,逐步扩展到更复杂的评测场景。在实际应用中,选择与目标应用场景匹配的评估模型非常重要——不同的评估模型可能会对同一回答给出不同的评分。
总结
ModelScope/EvalScope v0.13.0 的发布标志着该框架在评测方法论上的重要进步。LLM-as-an-Evaluator机制的引入为大模型评估开辟了新思路,而新增的评测基准则扩展了框架的应用范围。这些改进使得开发者能够更全面、更深入地评估大语言模型的各种能力,为模型优化和应用落地提供了更可靠的参考依据。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00