LMDeploy项目中VLM服务部署的本地图片处理方法
2025-06-03 19:49:38作者:申梦珏Efrain
在LMDeploy项目中部署视觉语言模型(VLM)服务时,开发者经常遇到需要处理本地图片上传的问题。本文将详细介绍如何通过Base64编码技术实现本地图片的有效传输和处理。
技术背景
视觉语言模型(VLM)需要同时处理文本和图像输入,当以服务方式部署时,通常要求客户端提供图片的URL地址。然而在实际开发场景中,开发者更常需要处理本地存储的图片文件而非网络图片。
解决方案
通过Base64编码技术,我们可以将本地图片转换为可直接嵌入请求中的文本格式。这种方法不需要额外的图片存储服务,特别适合开发和测试环境使用。
实现步骤
- 图片读取与编码:使用Python内置模块读取图片文件并进行Base64编码转换
- 构建请求体:按照OpenAI API格式组织请求数据
- 发送请求:通过客户端库向部署的服务发送处理请求
代码实现
import base64
from openai import OpenAI
# 初始化客户端连接
client = OpenAI(api_key='placeholder', base_url='http://0.0.0.0:23333/v1')
# 获取可用模型名称
model_name = client.models.list().data[0].id
# 处理本地图片
with open("本地图片路径", "rb") as image_file:
# 将图片转换为Base64编码字符串
base64_img = base64.b64encode(image_file.read()).decode('utf-8')
# 构建请求消息体
messages = [{
'role': 'user',
'content': [
{
'type': 'text',
'text': '请描述这张图片的内容'
},
{
'type': 'image_url',
'image_url': {
'url': f'data:image/jpeg;base64,{base64_img}'
}
}
]
}]
# 发送请求并获取响应
response = client.chat.completions.create(
model=model_name,
messages=messages
)
技术要点
- Base64编码:将二进制图片数据转换为ASCII字符串,确保能安全地在JSON中传输
- 数据URL格式:使用
data:image/jpeg;base64,前缀标识Base64编码的图片数据 - 多模态消息结构:同时包含文本和图像内容的多部分消息构造
注意事项
- 大尺寸图片会导致Base64字符串过长,可能影响传输效率
- 生产环境中建议结合图片存储服务使用URL方式
- 注意图片格式与声明的MIME类型一致
总结
通过Base64编码技术,开发者可以方便地在LMDeploy项目中将本地图片传递给VLM服务。这种方法简化了开发测试流程,是快速验证模型功能的实用方案。对于生产环境,建议评估图片大小和传输效率后选择合适的实现方式。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660