Polars项目中滚动中位数计算性能优化分析
2025-05-04 03:33:52作者:温玫谨Lighthearted
在Polars数据处理库中,滚动窗口计算是时间序列分析的重要功能。近期社区发现了一个关于分组滚动中位数计算性能问题的案例,当处理大数据集和大窗口尺寸时,计算速度明显低于Pandas。本文将从技术角度深入分析这一性能问题的根源及优化方向。
性能问题现象
测试数据显示,在处理1000万行数据时,Polars的滚动中位数计算耗时显著增加:
- 14天窗口:Pandas约9秒,Polars约135秒
 - 56天窗口:Pandas约19秒,Polars约450秒
 
相比之下,简单聚合如均值计算则表现良好,说明问题特定于中位数计算场景。
底层实现分析
Polars当前的中位数计算实现基于排序缓冲区(SortedBuf)结构,内部使用Vec作为存储容器。这种实现方式导致两个关键性能瓶颈:
- 插入和删除操作的时间复杂度为O(n)
 - 窗口滑动时需要进行完整的重新排序
 
而Pandas的实现采用了跳表(Skip List)数据结构,其插入和删除操作的时间复杂度为O(log n),这使得它在处理大窗口时更具优势。
优化方案探讨
基于性能分析,可以考虑以下优化方向:
- 
数据结构优化:采用跳表替代当前的有序向量实现。测试数据显示,在7.5e7数据量下,跳表实现可将时间从6.5秒降至1.05秒,接近Pandas的1.07秒。
 - 
算法优化:针对已排序输入数据实现特殊处理路径,避免不必要的重复排序。
 - 
并行计算:利用Polars的并行计算能力,将大窗口计算任务分配到多个线程。
 
权衡考量
任何优化都需要考虑多方面因素:
- 小窗口场景下可能出现轻微性能回归
 - 内存使用效率需要评估
 - 代码复杂度的增加
 - 与现有API的兼容性
 
结论与展望
Polars作为高性能数据处理库,在滚动计算场景仍有优化空间。通过改进中位数计算的核心数据结构,有望显著提升大窗口场景下的性能表现。未来可以考虑引入自适应策略,根据窗口大小自动选择最优算法,在各类场景下都能保持良好性能。
对于开发者而言,理解这类性能问题的根源有助于更好地使用工具,在必要时实现自定义解决方案。同时,这也展示了数据结构选择对算法性能的关键影响。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445