Polars项目中滚动中位数计算性能优化分析
2025-05-04 16:13:35作者:温玫谨Lighthearted
在Polars数据处理库中,滚动窗口计算是时间序列分析的重要功能。近期社区发现了一个关于分组滚动中位数计算性能问题的案例,当处理大数据集和大窗口尺寸时,计算速度明显低于Pandas。本文将从技术角度深入分析这一性能问题的根源及优化方向。
性能问题现象
测试数据显示,在处理1000万行数据时,Polars的滚动中位数计算耗时显著增加:
- 14天窗口:Pandas约9秒,Polars约135秒
- 56天窗口:Pandas约19秒,Polars约450秒
相比之下,简单聚合如均值计算则表现良好,说明问题特定于中位数计算场景。
底层实现分析
Polars当前的中位数计算实现基于排序缓冲区(SortedBuf)结构,内部使用Vec作为存储容器。这种实现方式导致两个关键性能瓶颈:
- 插入和删除操作的时间复杂度为O(n)
- 窗口滑动时需要进行完整的重新排序
而Pandas的实现采用了跳表(Skip List)数据结构,其插入和删除操作的时间复杂度为O(log n),这使得它在处理大窗口时更具优势。
优化方案探讨
基于性能分析,可以考虑以下优化方向:
-
数据结构优化:采用跳表替代当前的有序向量实现。测试数据显示,在7.5e7数据量下,跳表实现可将时间从6.5秒降至1.05秒,接近Pandas的1.07秒。
-
算法优化:针对已排序输入数据实现特殊处理路径,避免不必要的重复排序。
-
并行计算:利用Polars的并行计算能力,将大窗口计算任务分配到多个线程。
权衡考量
任何优化都需要考虑多方面因素:
- 小窗口场景下可能出现轻微性能回归
- 内存使用效率需要评估
- 代码复杂度的增加
- 与现有API的兼容性
结论与展望
Polars作为高性能数据处理库,在滚动计算场景仍有优化空间。通过改进中位数计算的核心数据结构,有望显著提升大窗口场景下的性能表现。未来可以考虑引入自适应策略,根据窗口大小自动选择最优算法,在各类场景下都能保持良好性能。
对于开发者而言,理解这类性能问题的根源有助于更好地使用工具,在必要时实现自定义解决方案。同时,这也展示了数据结构选择对算法性能的关键影响。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1