Stripe-PHP 库中支付链接的 line_items 属性获取问题解析
在使用 Stripe-PHP 库处理支付链接时,开发者可能会遇到一个常见问题:通过 API 检索到的支付链接对象中,line_items 属性显示为 null。这个问题涉及到 Stripe API 的一个重要设计特性——可包含属性(includable properties)。
问题现象
当开发者创建支付链接时,通常会指定 line_items 参数来定义支付项目。例如:
$link = $stripe->paymentLinks->create([
'line_items' => [
[
'price' => $price->id,
'quantity' => 1
],
]
]);
然而,在后续通过支付链接ID检索该对象时:
$plink = $stripe->paymentLinks->retrieve($paymentLinkId);
发现 $plink->line_items 为 null,导致调用 toJSON() 方法时出现错误。
技术原理
这个问题源于 Stripe API 的优化设计。为了减少不必要的数据传输和提高性能,Stripe API 默认不会返回所有可能的属性。line_items 就是这样一个"可包含属性"(includable property),它需要开发者明确请求才会在响应中包含。
解决方案
正确的做法是使用 Stripe 的"扩展"(expand)功能,明确请求包含 line_items 属性:
$plink = $stripe->paymentLinks->retrieve(
$paymentLinkId,
['expand' => ['line_items']]
);
同样地,对于结账会话(checkout session)对象,也需要使用相同的技术:
$session = $stripe->checkout->sessions->retrieve(
$sessionId,
['expand' => ['line_items']]
);
最佳实践
-
预先规划数据需求:在编写代码前,明确需要哪些属性,特别是那些标记为可包含的属性。
-
批量扩展:可以一次性请求多个可包含属性,例如:
['expand' => ['line_items', 'customer', 'payment_intent']]
-
性能考量:虽然扩展功能很强大,但不应过度使用。只请求实际需要的属性,以避免不必要的数据传输和处理开销。
-
错误处理:始终对可能的null值进行防御性编程,即使使用了扩展功能。
深入理解
Stripe API 的这种设计模式在REST API中很常见,它遵循了"按需获取"的原则。这种设计有以下几个优点:
- 减少了网络传输的数据量
- 提高了API响应速度
- 降低了服务器处理负担
- 让客户端可以精确控制所需数据
对于PHP开发者来说,理解这一设计模式非常重要,因为它不仅存在于Stripe API中,也是现代API设计的常见实践。
通过正确使用扩展功能,开发者可以灵活地获取所需数据,同时保持应用程序的高效运行。这一技术同样适用于Stripe API中的其他资源类型,如订单、发票等,它们都可能包含需要显式请求的可包含属性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









