OpenTelemetry-JS 中解决日志服务名称显示为 unknown_service_node 的方法
在使用 OpenTelemetry Node.js SDK 时,开发者可能会遇到一个常见问题:当将日志数据通过 OTLP 导出到 Elastic Agent 时,日志被归类到 unknown_service_node 服务下,而不是显示预期的服务名称。本文将深入分析这个问题并提供解决方案。
问题现象
当开发者使用 OpenTelemetry Node.js SDK 配置多个应用向同一个 Collector 发送数据时,通常会出现以下情况:
- 指标(Metrics)和追踪(Traces)数据能够正确显示在各自的服务名称下
- 日志数据却被统一归类到
unknown_service_node服务中
问题原因
这个问题的根本原因在于日志记录器(Logger)没有正确关联资源(Resource)信息。在 OpenTelemetry 中,资源用于标识产生遥测数据的实体(如服务)。如果没有明确指定资源信息,日志记录器将无法确定其所属的服务名称。
解决方案
要解决这个问题,我们需要创建一个包含服务名称的资源对象,并将其同时应用于 NodeSDK 和 LoggerProvider。以下是完整的解决方案:
import { Resource } from '@opentelemetry/resources';
import { SEMRESATTRS_SERVICE_NAME } from '@opentelemetry/semantic-conventions';
// 创建包含服务名称的资源对象
const resource = Resource.default().merge(
new Resource({
[SEMRESATTRS_SERVICE_NAME]: "App 1", // 你的服务名称
})
);
// 将资源应用到NodeSDK
const sdk = new NodeSDK({
resource: resource,
// 其他配置...
});
// 将资源应用到LoggerProvider
const loggerProvider = new LoggerProvider({
resource: resource,
});
实现原理
-
资源(Resource)概念:在 OpenTelemetry 中,资源代表产生遥测数据的实体,通常包含服务名称、服务版本等信息。
-
语义约定(Semantic Conventions):
SEMRESATTRS_SERVICE_NAME是 OpenTelemetry 定义的语义属性常量,用于标识服务名称。 -
资源合并:
Resource.default()获取默认资源,然后通过merge()方法将自定义的服务名称合并进去。 -
应用资源:将创建好的资源对象同时传递给 NodeSDK 和 LoggerProvider,确保所有遥测数据(包括日志)都能正确关联到服务。
最佳实践
-
统一资源配置:建议将资源创建逻辑提取到单独模块中,确保整个应用使用相同的资源配置。
-
环境变量支持:可以通过环境变量动态设置服务名称,提高配置灵活性。
-
完整属性:除了服务名称,还可以在资源中添加其他有用信息,如服务版本、部署环境等。
const resource = Resource.default().merge(
new Resource({
[SEMRESATTRS_SERVICE_NAME]: process.env.SERVICE_NAME || "default-service",
['service.version']: process.env.SERVICE_VERSION || "1.0.0",
['deployment.environment']: process.env.NODE_ENV || "development",
})
);
通过以上方法,开发者可以确保日志数据与指标和追踪数据一样,正确显示在对应的服务名称下,而不是被归类到 unknown_service_node 中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00