PyWiFi教程:无线网络操作的多功能工具
项目介绍
PyWiFi 是一个跨平台的 Python 库,专门设计用于操纵无线网络设备。它提供了一个简单的API,让开发者能够轻松地执行诸如连接Wi-Fi网络、扫描周围的网络、甚至管理密码等任务。该库兼容多个操作系统,重点支持Windows和Linux环境。通过与wpa_supplicant(在Linux上)或Native Wifi组件(WindowsXP SP2及以上版本)交互,PyWiFi实现了对无线网络的强大而灵活的控制。
项目快速启动
安装PyWiFi
首先,确保你的环境中已经安装了Python 2.7或更高版本(推荐使用Python 3.x)。然后,通过pip安装PyWiFi:
pip install pywifi
如果你遇到依赖性问题特别是在某些特定的Linux发行版上,可能需要手动安装comtypes(仅限Windows)或确保系统层面的无线工具(如wpa_supplicant和iwconfig在Linux上)已正确设置。
示例:扫描并连接到Wi-Fi
下面的Python代码展示了如何使用PyWiFi库来扫描可用的Wi-Fi网络并连接到指定的网络。
import pywifi
from pywifi import const
# 初始化PyWiFi对象
wifi = pywifi.PyWiFi()
# 获取第一个无线网卡接口
iface = wifi.interfaces()[0]
# 断开所有现有连接
if iface.status() in [const.IFACE_ASSOCIATED]:
iface.disconnect()
# 等待断开
while iface.status() == const.IFACE_ASSOCIATED:
time.sleep(1)
# 设置Wi-Fi连接配置
profile = pywifi.Profile()
profile.ssid = "YourSSIDHere"
profile.auth = const.AUTH_ALG_OPEN
profile.akm.append(const.AKM_TYPE_WPA2PSK)
profile.cipher = const.CIPHER_TYPE_CCMP
profile.key = "YourPasswordHere"
# 添加配置到网卡
iface.add_network_profile(profile)
# 连接到Wi-Fi
iface.connect(profile)
# 等待连接完成
while iface.status() != const.IFACE_ASSOCIATED:
time.sleep(1)
print("Connected to Wi-Fi network.")
记得替换YourSSIDHere和YourPasswordHere为你想要连接的Wi-Fi网络的名称和密码。
应用案例和最佳实践
自动重连脚本
在IoT设备或移动应用中,自动化重连到最近使用的Wi-Fi网络是一项实用功能。PyWiFi可以帮助实现这一功能,通过对网络连接状态的监控并自动尝试重新连接到预设的Wi-Fi网络。
无线信号强度监测
利用PyWiFi,你可以编写脚本来持续监测特定Wi-Fi网络的信号强度,这在优化网络配置或进行网络环境分析时非常有用。
典型生态项目
虽然PyWiFi本身是专注于基础Wi-Fi操作的库,但结合其他Python库(如用于数据分析的Pandas,或用于图形界面的Tkinter),可以创建更复杂的应用,如Wi-Fi信号分析仪表板、自动Wi-Fi连接管理系统等。例如,开发一个应用程序来展示周边Wi-Fi热点的列表,包括它们的信号强度和安全类型,或者一个图形界面工具让用户能够直观选择和连接到Wi-Fi网络。
通过上述教程,你应该对PyWiFi的基本用法有了初步了解,这只是一个起点,PyWiFi的强大功能还有待你在实践中深入探索。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00