PaddleSeg中SFTPM图像异常分割算法技术解析
2025-05-26 02:20:40作者:仰钰奇
算法原理概述
SFTPM(Self-supervised Feature Pyramid Matching)是一种基于自监督学习的图像异常检测与分割算法,主要应用于工业质检领域。该算法的核心思想是通过在正常样本上训练一个特征金字塔匹配网络,学习正常样本的特征分布,从而在推理时能够检测出与正常特征分布不符的异常区域。
与传统监督学习方法不同,SFTPM只需要正常样本进行训练,不需要异常样本标注,这在实际工业场景中具有显著优势,因为异常样本往往难以收集且标注成本高。
训练数据准备
SFTPM的训练数据准备有其特殊性:
- 训练集只需包含正常样本图像
- 标签文件(train.txt)中每行只需包含图像路径,不需要标注掩模路径
- 验证集可以少量设置,主要满足框架运行需要
典型的数据目录结构如下:
dataset_root/
├── train/
│ ├── image1.jpg
│ ├── image2.jpg
│ └── ...
└── train.txt
其中train.txt内容示例:
train/image1.jpg
train/image2.jpg
...
模型训练要点
在PaddleSeg框架下训练SFTPM模型时,需要注意以下关键点:
- 配置文件中num_classes应设置为1
- 训练过程中会保存多个检查点,最终模型权重保存在iter_{max_iters}文件中
- 验证集不是必须的,可以仅用于满足框架运行需要
- 训练轮数(iterations)需要根据实际情况调整
模型部署与推理
SFTPM模型支持多种部署方式,但在导出和推理时需要注意:
- Paddle原生推理:使用tools/predict.py可直接获得正常的分割结果
- ONNX导出:
- 通过tools/export.py导出PD模型,再用paddle2onnx转换时可能出现输出为整型的问题
- 直接使用tools/model/export_onnx.py导出可获得浮点输出,但结果可能接近原图重构
- C++部署:基于PaddleX的服务化部署方案支持C++推理
常见问题解决方案
-
环境安装问题:出现"cannot import name 'setup_logger'"错误时,确保正确执行了python setup.py install或python -m pip install -v -e .
-
多分类训练:SFTPM设计为单分类异常检测,如需多分类需要修改网络结构或采用其他算法
-
ONNX推理异常:确保推理时的图像预处理(如缩放比例)与训练时完全一致
实际应用建议
- 对于工业质检场景,建议先在小样本上验证算法效果
- 训练数据应尽可能覆盖正常样本的所有变化情况
- 推理时注意调整异常分数阈值,平衡检出率与误检率
- 考虑结合其他异常检测算法(如EfficientAD)进行结果融合
SFTPM算法在PaddleSeg中的实现为工业异常检测提供了高效解决方案,通过合理配置和优化,可以在实际生产中发挥重要作用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134